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ABSTRACT

Enhancements are described for an approach that unifies edge preserving smoothing with segmentation of
time sequences of volumetric images, based on differential edge detection at multiple spatial and temporal
scales. Potential applications of these 4-D methods include segmentation of respiratory gated positron emission
tomography (PET) transmission images to improve accuracy of attenuation correction for imaging heart and lung
lesions, and segmentation of dynamic cardiac single photon emission computed tomography (SPECT) images
to facilitate unbiased estimation of time-activity curves and kinetic parameters for left ventricular volumes
of interest. Improved segmentation of lung surfaces in simulated respiratory gated cardiac PET transmission
images is achieved with a 4-D edge detection operator composed of edge preserving 1-D operators applied in
various spatial and temporal directions. Smoothing along the axis of a 1-D operator is driven by structure
separation seen in the scale-space fingerprint, rather than by image contrast. Spurious noise structures are
reduced with use of small-scale isotropic smoothing in directions transverse to the 1-D operator axis. Analytic
expressions are obtained for directional derivatives of the smoothed, edge preserved image, and the expressions
are used to compose a 4-D operator that detects edges as zero-crossings in the second derivative in the direction
of the image intensity gradient. Additional improvement in segmentation is anticipated with use of multiscale
transversely isotropic smoothing and a novel interpolation method that improves the behavior of the directional
derivatives. The interpolation method is demonstrated on a simulated 1-D edge and incorporation of the method
into the 4-D algorithm is described.
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1. INTRODUCTION

Nonlinear edge preserving smoothing is often performed prior to medical image segmentation. The goal of the
nonlinear smoothing is to improve segmentation accuracy by preserving significant changes in image intensity
while smoothing random noise fluctuations. Methods include median filtering,1 gray-scale morphology,2 and
spatially varying smoothing driven by local contrast measures3 or nonlinear diffusion.4, 5 Nonlinear prepro-
cessing can be particularly helpful for segmenting low-contrast images whose edges would be overly blurred by
spatially invariant linear smoothing performed in an attempt to achieve a desired contrast to noise ratio.

Rather than irreversibly altering images with edge preserving smoothing prior to segmentation, we have been
developing an approach that unifies edge preserving smoothing with segmentation based on differential edge
detection at multiple scales.6, 7 Analysis of time sequences of volumetric images (i.e., 4-D data) is decomposed
into independent 1-D problems. Smoothing in various directions along 1-D profiles through 4-D data is driven
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by a measure of local structure separation seen in the scale-space fingerprint, rather than by a local contrast
measure. Analytic expressions are obtained for the derivatives of edge preserved 1-D profiles. Using these
expressions, multidimensional edge detection operators such as the Laplacian or the second derivative in the
direction of the image intensity gradient are composed and used to segment 4-D data. This previous work is
summarized in Sections 2 and 3.

In the present work, we perform additional small-scale isotropic smoothing in directions transverse to each
1-D profile to reduce spurious noise structures without adversely affecting localization of true edges. Improved
segmentation results for simulated 4-D medical images are presented in Section 4, along with a mathematical
framework for incorporating results of transversely isotropic smoothing at multiple scales. We also report
preliminary results of a novel interpolation method that is anticipated to further improve differential edge
detection by improving the behavior of the derivatives along the edge preserved 1-D profiles.

Potential applications of these methods include 4-D spatiotemporal segmentation of respiratory gated posi-
tron emission tomography (PET) transmission images to improve accuracy of attenuation correction for imag-
ing heart and lung lesions,8, 9 and 4-D spatiotemporal segmentation of dynamic cardiac single photon emission
computed tomography (SPECT) images to facilitate unbiased estimation of time-activity curves and kinetic
parameters for left ventricular volumes of interest.10, 11

2. PRESERVING 1-D EDGES VIA RECURSIVE MULTISCALE BLENDING
We use recursive multiscale blending6, 7 to perform nonlinear edge preserving smoothing along 1-D profiles:

f̃(x, aj) =

{
f̄(x, a1) j = 1
[1− Cj(x)] f̃(x, aj−1) + Cj(x)̄f(x, aj) j = 2, . . . , J,

(1)

where f̃(x, aj) is a smoothed, edge preserved version of the 1-D signal f(x), aj is a scale parameter, Cj(x)
is a blending function that is constrained to lie between 0 and 1, and J is the total number of scales. The
edge preserved signal f̃(x, aj) is a convex combination of the signals {f̄(x, ai); i = 1, . . . , j}, which are linearly
smoothed versions of f(x) obtained via convolution with kernels based on the uniform cubic B-spline basis
function.12–14 The cubic B-spline with scale parameter aj has a support of 4aj and approximates a Gaussian
with standard deviation σj =

√
1/3 aj . Typically, the total number of scales J ranges between 3–5 and dyadic

sampling of the scale coordinate a is used so that aj = 2j−1a1.

The blending functions {Cj(x); j = 2, . . . , J} play a role similar to that of spatially varying diffusion coef-
ficients used in typical implementations of edge preserving smoothing via nonlinear diffusion (e.g., Refs. 4, 5).
When Cj(x0) = 0, smoothing stops in the neighborhood of x0 and f̃(x0, aj) remains unchanged from the value
f̃(x0, aj−1) obtained with use of edge preserving smoothing at the previous, finer scale. When Cj(x0) = 1,
smoothing is unabated and f̃(x0, aj) is set to the value f̄(x0, aj) obtained with use of linear smoothing at the
current, coarser scale.

The blending functions are defined via an analysis of the augmented scale-space fingerprint (Figure 1). At
a particular scale, the amount of blending is decreased as the separation between fingerprint lines increases,
such as in the neighborhood of edges.6, 7 Figure 2 shows edge preserving smoothing results for the noisy ramp
edge shown in Figure 1. Recursive multiscale blending yields a sharper edge than does linear smoothing and
provides comparable smoothing away from the edge (Figure 2a). The blending functions consistently reach their
minimum near the edge, thus reducing the amount of smoothing in the neighborhood of the edge (Figure 2b).
Away from the edge, the blending functions increase, thus increasing the amount of smoothing. Because of the
high noise level, the apparent position of the edge is shifted to the right.

With use of Equation (1), an analytic expression can be obtained for the first derivative along a smoothed,
edge preserved 1-D profile:

f̃(1)(x, aj) =




f̄(1)(x, a1) j = 1

f̃(1)(x, aj−1) + Cj(x)
[
f̄(1)(x, aj)− f̃(1)(x, aj−1)

]
+ C(1)

j (x)
[
f̄(x, aj)− f̃(x, aj−1)

] j = 2, . . . , J,
(2)
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Figure 1. Augmented scale-space fingerprint14 for a noisy ramp edge of width four and a contrast to noise ratio of 2.5.
Solid fingerprint lines depict the zero-crossing locations of the second derivative (i.e., edge locations) over a continuum
of scales. Dashed lines depict the zero-crossing locations of the first derivative (i.e., ridge and trough locations). The
noiseless edge is shown with the noisy edge below the fingerprint.

where superscripts in parentheses denote the order of derivatives with respect to x. The second derivative along
the 1-D profile is

f̃(2)(x, aj) =




f̄(2)(x, a1) j = 1

f̃(2)(x, aj−1) + Cj(x)
[
f̄(2)(x, aj)− f̃(2)(x, aj−1)

]
+ 2C(1)

j (x)
[
f̄(1)(x, aj)− f̃(1)(x, aj−1)

]
+ C(2)

j (x)
[
f̄(x, aj)− f̃(x, aj−1)

] j = 2, . . . , J.
(3)

Equation (1) has the desirable property that the nonlinearly smoothed signal f̃(x, aj) is bounded by the extrema
of the linearly smoothed signals {f̄(x, ai); i = 1, . . . , j} for all x. However, the derivatives given by Equations (2)
and (3) can be less well-behaved and can contain spurious zero-crossings that generate false edges in the output
of the multidimensional edge detection operator described in Section 3. The goal of the work described in
Section 4 is to reduce these false edges.

3. PRESERVING AND SEGMENTING MULTIDIMENSIONAL EDGES

Edges can be preserved in multidimensional (n-D) image data by applying the 1-D smoothing algorithm de-
scribed in Section 2 independently along the coordinate axis directions and along the diagonal directions of
the 2-D planes spanned by the coordinate axes, and averaging the results. We refer to this as multidirectional
1-D processing and note that this builds on work by Weickert et al5 in which processing was performed only
along the coordinate axis directions. The information obtained along the diagonal directions allows character-
ization of first and second order differential properties of the data in any direction.14 Using this additional
information, multidimensional edge detection operators such as the Laplacian or the second derivative in the
direction of the image intensity gradient can be composed and used to segment the data as follows.

The n-D data array is denoted by f(x), where x =
[
x1 · · · xn

]T is the position vector for the domain
of the data and “[ ]T” denotes the matrix transpose. The 1-D profile passing through the point x0 in the
direction v0 is denoted by

fx0,v0(s) = f(x0 + sv0), (4)
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Figure 2. Edge preserving smoothing results for a noisy ramp edge of width four and a contrast to noise ratio of 2.5.
In (a), the dashed line and solid line depict linear and nonlinear smoothing results, respectively, at scale a4 = 8. The
dotted line depicts the unsmoothed signal, which is also shown in Figure 1 along with its scale-space fingerprint and the
noiseless signal. The blending functions C2(x), C3(x), and C4(x) used to perform nonlinear smoothing are shown in (b).

where v =
[
v1 · · · vn

]T is a unit vector and s is an arc length parameter. The relationships between the first
and second derivatives of fx,v(s) and the first and second order partial derivatives of the n-D data f(x) are

dfx,v

ds
= v · ∇f = vTg (5)

d2fx,v

ds2
= v · ∇[v · ∇f] = vTHv, (6)

where g(x) is the image intensity gradient vector and H(x) is the Hessian matrix. One can rewrite Equation (6)
as an inner product of (n2+n

2 )-element vectors:

d2fx,v

ds2
= wTh, (7)

where

w =
[
v2
1 2v1v2 · · · 2v1vn v2

2 2v2v3 · · · 2v2vn · · · v2
n−1 2vn−1vn v2

n

]T (8)

h =
[
H11 H12 · · · H1n H22 H23 · · · H2n · · · H(n−1)(n−1) H(n−1)n Hnn

]T (9)

and Hij = ∂2f
∂xi∂xj

. Given derivative estimates in all 1-D profiles along the coordinate axis directions and diagonal
directions of 2-D planes spanned by the coordinate axes (for a total of n2 directions), one can compute least
squares estimates of the image intensity gradient vector g(x) and the vector h(x) of Hessian matrix elements.7, 14

Using these estimates one can compose multidimensional operators that detect edges as zero-crossings in the
Laplacian, trace(H), or in the second derivative in the direction of the gradient, weighted by the squared
magnitude of the gradient, gTHg.

4. REDUCING FALSE EDGES

We have been refining the methods described in Sections 2 and 3 to improve 4-D medical image segmentations
obtained with use of edge preserving smoothing via multiscale recursive blending. The goal is to reduce noise
in the 1-D profile derivatives with minimal additional blurring along the profile, and thereby reduce spurious
structures in segmentations without adversely affecting localization of true edges.
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4.1. Effects of Small-Scale Transversely Isotropic Smoothing

We used simulated 4-D medical image data to investigate the benefit that results from performing additional
small-scale isotropic smoothing with a 3×3×3 kernel in directions transverse to each 1-D profile, prior to recursive
multiscale blending. This small-scale transversely isotropic smoothing improved lung surface segmentations in
simulated respiratory gated cardiac PET transmission images (Figure 3), compared to segmentations that we
obtained previously (Ref. 7, Fig. 2, page 436).

The 4-D image array was generated with use of the Mathematical Cardiac Torso (MCAT) software phantom15

and was composed of 40 contiguous 5 mm-thick transverse slices at 15 respiratory phases. Figure 3a shows a
3-D wireframe rendering of the known lung surface segmentation at respiratory phase 8. Each transverse slice
had 80×80 pixels with pixel size 5 mm × 5 mm. Diaphragm and heart motion of 15 mm in the superior-inferior
direction was simulated, in conjunction with chest wall diameter changes of 9.8 mm in the left-right direction
and 20 mm in the anterior-posterior direction. Gaussian white noise was added to the images to yield contrast
to noise ratios of 5.0 at the air-soft tissue boundary and 3.5 at the soft tissue-lung boundaries (Figure 3b).

Subsequent to small-scale transversely isotropic smoothing, linear 1-D filtering at J = 3 scales and recursive
multiscale blending were applied independently along the x, y, z, and t axes of the noisy 80×80×40×15 dataset
and along the 12 diagonal directions of the 2-D planes spanned by the axes. The longest 1-D linear filter had
a support of 19 pixels and approximated a Gaussian with σ =

√
6 pixels. For comparison, linear smoothing

was also performed on the original noisy data with use of a 7×7×7×7 separable filter that approximated a
4-D Gaussian with σ = 1.1 pixels. This separable filter yielded the same noise reduction for independent,
identically distributed Gaussian noise as that obtained by averaging the outputs of the sixteen 1×19 linear
1-D smoothing filters. Edge preserved results were generated by averaging the outputs of the sixteen 1×19
nonlinear 1-D smoothing filters obtained with use of recursive multiscale blending.

Visual differences were subtle between the smoothed images, which had substantially reduced noise because of
the smoothing performed in all four spatial and temporal dimensions (Figures 3d,f,h). Differences were evident,
however, between segmentations obtained with 4-D operators that detected edges as zero-crossings in the second
derivative in the direction of the image intensity gradient (Figures 3c,e,g). Lung surfaces were detected fairly
accurately by the 7×7×7×7 separable operator, but the segmentation also contained many spurious noise
structures, as seen in the 3-D wireframe rendering of extracted surfaces in Figure 3c and the display of surface
cross sectional contours on the smoothed image in Figure 3d. In particular, noise structures extended outside
the lungs throughout the chest wall and mediastinum. Noise structures were reduced by processing with the
linear 16×(1×19) operator (Figure 3e), but localization of lung surfaces was inaccurate (Figure 3f) because of
the long support of the 1-D linear filters. The edge preserving 16×(1×19) operator restored the accuracy of
lung surface localization without unduly increasing spurious noise structures (Figures 3g,h).

4.2. Recursive Blending of Results of Multiscale Transversely Isotropic Smoothing

When transversely isotropic smoothing is performed at multiple scales, Equation (1) can be generalized so that
the edge preserved signal f̃(x, aj) is a convex combination of the signals {f̄(x, ai, bk); i = 1, . . . , j; k = 1, . . . , K},
where f̄(x, aj , bk) is a 1-D profile through n-D data that have smoothed with a kernel having scale parameter
aj in the direction parallel to the profile and scale parameter bk in the (n− 1) dimensions transverse to the
profile. We refer to aj as the longitudinal scale parameter and to bk as the transverse scale parameter. The
generalization of Equation (1) is

f̃(x, aj) =




K∑
k=1

D1k(x)̄f(x, a1, bk) j = 1

[1− Cj(x)] f̃(x, aj−1) +
K∑

k=1

Djk(x)̄f(x, aj , bk) j = 2, . . . , J,

(10)

where the blending functions {Djk(x); j = 1, . . . , J ; k = 1, . . . , K} are constrained to lie between 0 and 1, Cj(x)
is the sum

∑K
k=1 Djk(x), and K is the total number of transverse scales. The blending functions are also subject

to the constraints
∑K

k=1 D1k(x) = 1 and
∑K

k=1 Djk(x) ≤ 1 for j = 2, . . . , J . Thus, Equation (1) corresponds to
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(a) simulated lung surfaces (b) original noisy image

(c) 7×7×7×7 linear smoothing (d) 7×7×7×7 linear smoothing

(e) 16×(1×19) linear smoothing (f) 16×(1×19) linear smoothing

(g) 16×(1×19) edge preserving smoothing (h) 16×(1×19) edge preserving smoothing

Figure 3. Smoothing and segmenting simulated 4-D respiratory gated PET transmission images. (a) Anterior coronal
view of 3-D wireframe rendering of known segmentation of lung surfaces at respiratory phase 8. (b) Noisy 52×26 pixel
sub-image from a coronal cross section. The right dome of the diaphragm is the larger, semicircular structure on the left.
The heart is the smaller, circular structure on the right. (c,e,g) Wireframe 3-D surface renderings of lung segmentation
results for 4-D separable, multidirectional 1-D linear, and multidirectional 1-D edge preserving smoothing, respectively.
(d,f,h) Cross sectional contours from surface segmentations shown in (c,e,g), respectively, are depicted as solid lines on
smoothed coronal images. Dotted lines depict the true soft tissue-lung boundaries shown in (a).

6



Medical Imaging 2004: Image Processing, Proceedings of the SPIE, vol. 5370, pp. 657–665 LBNL-53558

−20 0 20
−1

0

1

2

x

Figure 4. Improving the behavior of the derivatives of an edge preserved 1-D profile. The dashed line depicts the
edge preserved profile shown as a solid line in Figure 2a. The solid line in this figure depicts the profile obtained by
interpolating the zeroth, first, and second derivatives at the points shown as circles. The well-behaved interpolation
removes inflections associated with noise while preserving the inflection associated with the edge.

the case where K = 1 and b1 = 0 pixels, and the results presented in Section 4.1 correspond to the case where
K = 1 and b1 = 1 pixel.

4.3. Improving the Behavior of 1-D Profile Derivatives

We anticipate that the localization accuracy of differential edge detection will be increased and that noise
structures will be reduced by improving the behavior of the derivatives along edge preserved 1-D profiles. We
have generalized Stineman’s interpolation method16 so that we can interpolate the zeroth, first, and second
derivatives at key points along a profile and obtain derivatives with fewer spurious zero-crossings between
interpolation points.17 These refined descriptions of edge preserved profile derivatives will then serve as inputs
to the multidimensional edge detection operator.

Figure 4 shows the results of interpolating the zeroth, first, and second derivatives at key points along
the edge preserved profile shown in Figure 2a. Our interpolation method removes inflections associated with
noise while preserving the inflection associated with the true edge. At a particular scale aj , interpolation points
(depicted as circles in Figure 4) are selected as the intersections of the edge preserved signal at the previous scale,
f̃(x, aj−1), and the linearly smoothed signal at the current scale, f̄(x, aj). Equations (1)–(3) are then evaluated
at the intersection points to obtain the values to be interpolated. As seen in Figure 4, the intersections include
the point where the preserved edge crosses a linearly blurred version of the edge. This intersection occurs
near the inflection associated with the edge. Interpolating the relatively large-magnitude first derivative and
relatively small-magnitude second derivative at this point preserves the edge.

The interpolation has the added benefit of providing a compact representation of the edge preserved 1-D pro-
file. For example, the 50-pixel segment shown in Figure 4 is analytically described by the values of the zeroth,
first, and second derivatives at only 10 points (the 8 points depicted as circles and the next interpolation point
lying off of either end).

5. FUTURE DIRECTIONS

The computer simulation in Section 4.1 demonstrates the benefit of performing small-scale isotropic smoothing
in directions transverse to each 1-D profile, prior to recursive multiscale blending. Spurious structures in
the 4-D image segmentation are reduced without adversely affecting the localization of true edges. Although
performed serially here, the computations can be massively parallelized.
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In addition to implementing well-behaved interpolation along 1-D profiles through 4-D data as described in
Section 4.3, we are investigating the benefit of performing transversely isotropic smoothing at multiple scales
as proposed in Section 4.2. We will analyze the properties of the scale-space fingerprint for a 1-D profile as
functions of both the longitudinal scale aj , which controls smoothing along the profile, and the transverse
scale bk, which controls smoothing in directions transverse to the profile. The goal of this fingerprint analysis
will be to determine blending functions Djk(x) for Equation (10) that provide the best compromise between
noise reduction and 4-D segmentation accuracy.
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