DESIGN, FABRICATION, INSTALLATION, TESTING AND INITIAL RESULTS OF IN-VESSEL CONTROL COILS FOR DIII-D

PDF Version Also Available for Download.

Description

OAK-B135 Since 1995, DIII-D has performed correction of magnetic field imperfections using a set of six external picture frame coils located on the vessel mid-plane. In 2000, these coils also demonstrated benefits when used for feedback of the resistive wall mode, an instability that limits the plasma performance at high beta. Modeling has shown that substantial performance improvements could be achieved by installing new coils inside the vessel and expanding the poloidal coverage above and below the mid-plane. Two prototype internal coils were installed in 2001 and were power tested successfully after several bakes to 350 C. A full set ... continued below

Physical Description

7 pages

Creation Information

ANDERSON,P.M; BAXI,C.B; KELLMAN,A.G & REIS,E.E October 1, 2003.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 11 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

OAK-B135 Since 1995, DIII-D has performed correction of magnetic field imperfections using a set of six external picture frame coils located on the vessel mid-plane. In 2000, these coils also demonstrated benefits when used for feedback of the resistive wall mode, an instability that limits the plasma performance at high beta. Modeling has shown that substantial performance improvements could be achieved by installing new coils inside the vessel and expanding the poloidal coverage above and below the mid-plane. Two prototype internal coils were installed in 2001 and were power tested successfully after several bakes to 350 C. A full set of twelve internal coils and related magnetic sensors are now operational in the DIII-D tokamak. The design requirements for the new coil system was to maximize the magnetic field at the plasma edge, operate with a frequency range of dc to 1000 Hz, and fit behind the existing graphite wall tiles. The coil design adopted and installed is a water-cooled hollow copper conductor insulated with polyamide and housed inside a stainless steel tube that forms a vacuum boundary. The coil is rigidly mounted to the inside of the vacuum vessel. The primary challenge in the design of these coils wa sin joining of both the copper conductor and the stainless tube without overheating the polyamide insulator. Elastic-plastic analysis was used to demonstrate acceptable thermal stresses during baking conditions. Analysis determined the optimum water cooling channel diameter. The coils were tested in high toroidal field to the limit of the power supply of 4.5 kA DC with inductance-limited current for frequencies between 300 Hz and 1000 Hz. Recent results are presented.

Physical Description

7 pages

Notes

OSTI as DE00823605

Source

  • 20th IEEE/NPSS SYMPOSIUM ON FUSION ENGINEERING, SAN DIEGO, CA (US), 10/14/2003--10/17/2003; Other Information: TO BE PUBLISHED IN FUSION SCIENCE AND TECHNOLOGY

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: GA-A24472
  • Grant Number: AC03-99ER54463
  • Office of Scientific & Technical Information Report Number: 823605
  • Archival Resource Key: ark:/67531/metadc780066

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 1, 2003

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • Dec. 16, 2016, 6:37 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 11

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

ANDERSON,P.M; BAXI,C.B; KELLMAN,A.G & REIS,E.E. DESIGN, FABRICATION, INSTALLATION, TESTING AND INITIAL RESULTS OF IN-VESSEL CONTROL COILS FOR DIII-D, article, October 1, 2003; United States. (digital.library.unt.edu/ark:/67531/metadc780066/: accessed October 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.