Drift Compression and Final Focus for Intense Heavy Ion Beams with Non-periodic, Time-dependent Lattice

PDF Version Also Available for Download.

Description

In the currently envisioned configurations for heavy ion fusion, it is necessary to longitudinally compress the beam bunches by a large factor after the acceleration phase. Because the space-charge force increases as the beam is compressed, the beam size in the transverse direction will increase in a periodic quadrupole lattice. If an active control of the beam size is desired, a larger focusing force is needed to confine the beam in the transverse direction, and a non-periodic quadrupole lattice along the beam path is necessary. In this paper, we describe the design of such a focusing lattice using the transverse ... continued below

Physical Description

780 Kilobytes pages

Creation Information

Qin, Hong; Davidson, Ronald C.; Barnard, John J. & Lee, Edward P. February 14, 2005.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

In the currently envisioned configurations for heavy ion fusion, it is necessary to longitudinally compress the beam bunches by a large factor after the acceleration phase. Because the space-charge force increases as the beam is compressed, the beam size in the transverse direction will increase in a periodic quadrupole lattice. If an active control of the beam size is desired, a larger focusing force is needed to confine the beam in the transverse direction, and a non-periodic quadrupole lattice along the beam path is necessary. In this paper, we describe the design of such a focusing lattice using the transverse envelope equations. A drift compression and final focus lattice should focus the entire beam pulse onto the same focal spot on the target. This is difficult with a fixed lattice, because different slices of the beam may have different perveance and emittance. Four time-dependent magnets are introduced in the upstream of drift compression to focus the entire pulse onto the sam e focal spot. Drift compression and final focusing schemes are developed for a typical heavy ion fusion driver and for the Integrated Beam Experiment (IBX) being designed by the Heavy Ion Fusion Virtual National Laboratory.

Physical Description

780 Kilobytes pages

Notes

INIS; OSTI as DE00836937

Source

  • Other Information: PBD: 14 Feb 2005

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: PPPL-4054
  • Grant Number: AC02-76CH03073
  • DOI: 10.2172/836937 | External Link
  • Office of Scientific & Technical Information Report Number: 836937
  • Archival Resource Key: ark:/67531/metadc779966

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • February 14, 2005

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • June 10, 2016, 5:56 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Qin, Hong; Davidson, Ronald C.; Barnard, John J. & Lee, Edward P. Drift Compression and Final Focus for Intense Heavy Ion Beams with Non-periodic, Time-dependent Lattice, report, February 14, 2005; Princeton, New Jersey. (digital.library.unt.edu/ark:/67531/metadc779966/: accessed August 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.