Preparation of Metal Filter Element for Fail Safety in IGCC Filter Unit

PDF Version Also Available for Download.

Description

Metal filter elements as the fail safety filter are fabricated by the methods using cold isostatic pressure (compress method) and binder (binder method) to form the filter element and tested in a experimental and bench units. The fail safety filter on the filtration system is mounted additionally in order to intercept the particle leak when the main filter element is broken. So it should have two contrary functions of a high permeability and being plugged easily. The filter element having high porosity and high plugging property was fabricated by the bind method. It has the porosity more than 50%, showed ... continued below

Physical Description

vp.

Creation Information

Choi, J-H.; Ahn, I-S.; Bak, Y-C.; Bae, S-Y.; Ha, S-J. & Jang, H-J. September 18, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Metal filter elements as the fail safety filter are fabricated by the methods using cold isostatic pressure (compress method) and binder (binder method) to form the filter element and tested in a experimental and bench units. The fail safety filter on the filtration system is mounted additionally in order to intercept the particle leak when the main filter element is broken. So it should have two contrary functions of a high permeability and being plugged easily. The filter element having high porosity and high plugging property was fabricated by the bind method. It has the porosity more than 50%, showed very small pressure drop less than 10mmH2O at the face velocity of 0.15m/s, and plugged within 5 minutes with the inhibition of the particle leak larger than 4 {micro}m. The test result of corrosion tendency in IGCC gas stream at 500 C shows SUS310L material is very reasonable among SUS310, SUS316, Inconel 600, and Hastelloy X.

Physical Description

vp.

Notes

OSTI as DE00835840

Source

  • 5th International Symposium on Gas Cleaning at High Temperatures, Morgantown, WV (US), 09/17/2002--09/20/2002

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: none
  • Office of Scientific & Technical Information Report Number: 835840
  • Archival Resource Key: ark:/67531/metadc779945

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 18, 2002

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • Jan. 22, 2016, 6:26 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Choi, J-H.; Ahn, I-S.; Bak, Y-C.; Bae, S-Y.; Ha, S-J. & Jang, H-J. Preparation of Metal Filter Element for Fail Safety in IGCC Filter Unit, article, September 18, 2002; United States. (digital.library.unt.edu/ark:/67531/metadc779945/: accessed August 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.