Quantitative in situ nanoindentation of aluminum films

PDF Version Also Available for Download.

Description

We report the development of a method for quantitative, in situ nanoindentation in an electron microscope and its application to study the onset of deformation during the nanoindentation of aluminum films. The load-displacement curve developed during in situ nanoindentation shows the characteristic ''staircase'' instability at the onset of plastic deformation. The instability corresponds to the first appearance of dislocations in previously defect-free grains, and occurs at a force near that measured in conventional nanoindentation experiments on similarly oriented Al grains. Plastic deformation proceeds through the formation and propagation of prismatic loops punched into the material, and half-loops that emanate from ... continued below

Creation Information

Minor, Andrew M.; Stach, Eric A. & Morris, J. W., Jr. April 4, 2001.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We report the development of a method for quantitative, in situ nanoindentation in an electron microscope and its application to study the onset of deformation during the nanoindentation of aluminum films. The load-displacement curve developed during in situ nanoindentation shows the characteristic ''staircase'' instability at the onset of plastic deformation. The instability corresponds to the first appearance of dislocations in previously defect-free grains, and occurs at a force near that measured in conventional nanoindentation experiments on similarly oriented Al grains. Plastic deformation proceeds through the formation and propagation of prismatic loops punched into the material, and half-loops that emanate from the sample surface. This new experimental technique permits the direct observation of the microstructural mechanisms that operate at the onset of deformation.

Source

  • Journal Name: Applied Physics Letters; Journal Volume: 79; Journal Issue: 11; Related Information: Journal Publication Date: 09/10/2001

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--47703
  • Grant Number: DE-AC02-05CH11231
  • DOI: 10.1063/1.1400768 | External Link
  • Office of Scientific & Technical Information Report Number: 860719
  • Archival Resource Key: ark:/67531/metadc779872

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 4, 2001

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 1, 2016, 7:44 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Minor, Andrew M.; Stach, Eric A. & Morris, J. W., Jr. Quantitative in situ nanoindentation of aluminum films, article, April 4, 2001; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc779872/: accessed December 13, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.