Chlorinated Hydrocarbon Degradation in Plants: Mechanisms and Enhancement of Phytoremediation of Groundwater Contamination

PDF Version Also Available for Download.

Description

Several varieties of transgenic poplar containing cytochrome P-450 2E1 have been constructed and are undergoing tests. Strategies for improving public acceptance and safety of transgenic poplar for chlorinated hydrocarbon phytoremediation are being developed. We have discovered a unique rhizobium species that lives within the stems of poplar and we are investigating whether this bacterium contributes nitrogen fixed from the air to the plant and whether this endophyte could be used to introduce genes into poplar. Studies of the production of chloride ion from TCE have shown that our present P-450 constructs did not produce chloride more rapidly than wild type ... continued below

Physical Description

vp.

Creation Information

Strand, Stuart E. June 1, 2002.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Several varieties of transgenic poplar containing cytochrome P-450 2E1 have been constructed and are undergoing tests. Strategies for improving public acceptance and safety of transgenic poplar for chlorinated hydrocarbon phytoremediation are being developed. We have discovered a unique rhizobium species that lives within the stems of poplar and we are investigating whether this bacterium contributes nitrogen fixed from the air to the plant and whether this endophyte could be used to introduce genes into poplar. Studies of the production of chloride ion from TCE have shown that our present P-450 constructs did not produce chloride more rapidly than wild type plants. Follow-up studies will determine if there are other rate limiting downstream steps in TCE metabolism in plants. Studies of the metabolism of carbon tetrachloride in poplar cells have provided evidence that the native plant metabolism is due to the activity of oxidative enzymes similar to the mammalian cytochrome P-450 2E1.

Physical Description

vp.

Source

  • Other Information: PBD: 1 Jun 2002

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: EMSP-73858-2002
  • Grant Number: FG07-96ER20256
  • DOI: 10.2172/834670 | External Link
  • Office of Scientific & Technical Information Report Number: 834670
  • Archival Resource Key: ark:/67531/metadc779783

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 2002

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 21, 2016, 4:48 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Strand, Stuart E. Chlorinated Hydrocarbon Degradation in Plants: Mechanisms and Enhancement of Phytoremediation of Groundwater Contamination, report, June 1, 2002; United States. (digital.library.unt.edu/ark:/67531/metadc779783/: accessed August 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.