Non Invasive estimation of aluminum concentration in Hall-Heroult reduction cells

PDF Version Also Available for Download.

Description

The present best practice for the preparation of primary aluminum is by electrolysis of alumina in the traditional Hall-Heroult reduction cell. The process conditions in the electrolyte of this cell required for the reduction to proceed are sufficiently harsh to have precluded the implementation of in situ sensing of the electrolyte composition, specifically the concentration of the ionized alumina. This report reveals the theoretical basis for a non-invasive method for estimation of the ionized alumina concentration which does not require the use of any sensor in direct contact with the cell electrolyte. The proposed method can in principle be applied ... continued below

Physical Description

26 pages

Creation Information

Bell, David March 1, 2004.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The present best practice for the preparation of primary aluminum is by electrolysis of alumina in the traditional Hall-Heroult reduction cell. The process conditions in the electrolyte of this cell required for the reduction to proceed are sufficiently harsh to have precluded the implementation of in situ sensing of the electrolyte composition, specifically the concentration of the ionized alumina. This report reveals the theoretical basis for a non-invasive method for estimation of the ionized alumina concentration which does not require the use of any sensor in direct contact with the cell electrolyte. The proposed method can in principle be applied with equal efficacy to the so-called drained cathode cell designs and to cells having any anode composition, because only knowledge of the electrolyte conduction behavior is required a priori. For an operating cell, the proposed method requires only readily available electrical measurements and the facilities to process the acquired signals. The proposed method rests on the ability to identify certain characteristics of the transients in the reduction cell terminal voltages caused by the quasiperiodic introduction of alumina. It will be shown that these voltage transients manifest measurable properties, in a statistical sense, that should permit estimation of the ionized alumina concentration with a delay of one alumina feed cycle. The next logical step following the present work, consistent with the Aluminum Technology Roadmap [1], is to experimentally verify the predictions made here; no doubt practical refinements to the proposed approach will evolve during the course of experimentation. Successful verification of the proposed estimation method will permit the design of reduction cell control algorithms based directly on the mass balance of alumina in the electrolyte. This report assumes that the reader understands certain basic concepts important to the operation of electrolytic cells, and the Hall-Heroult cell in particular. References [2,3] provide such concepts in a manner accessible to the technically educated reader; reference [6] is a more thorough treatment.

Physical Description

26 pages

Notes

OSTI as DE00828148

Source

  • Other Information: PBD: 1 Mar 2004

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DE-FG36-02GO12047
  • Grant Number: /GO12047
  • DOI: 10.2172/828148 | External Link
  • Office of Scientific & Technical Information Report Number: 828148
  • Archival Resource Key: ark:/67531/metadc779765

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • March 1, 2004

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • Aug. 9, 2016, 8:21 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Bell, David. Non Invasive estimation of aluminum concentration in Hall-Heroult reduction cells, report, March 1, 2004; Golden, Colorado. (digital.library.unt.edu/ark:/67531/metadc779765/: accessed August 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.