PART I: STI PRODUCT DESCRIPTION

(To be completed by Recipient/Contractor)

A. STI Product Identifiers

1. **REPORT/PRODUCT NUMBER(s)**
 - Golden Field Office

2. **DOE AWARD/CONTRACT NUMBER(s)**
 - DE-FG36-03GO13016

3. **OTHER IDENTIFYING NUMBER(s)**
 - GO13016

B. Recipient/Contractor

STORM Development LLC

C. STI Product Title

Advanced Process Heater

D. Author(s)

Tom Briselden, Chris Parrish

E-mail Address(es):

tbriz@att.net

E. STI Product Issue Date/Date of Publication

03/07/2005 (mm/dd/yyyy)

F. STI Product Type *(Select only one)*

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>1. TECHNICAL REPORT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X Final</td>
<td>Other (specify)</td>
</tr>
<tr>
<td></td>
<td>2. CONFERENCE PAPER/PROCEEDINGS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conference Information (title, location, dates)</td>
<td></td>
</tr>
</tbody>
</table>

G. STI Product Reporting Period *(mm/dd/yyyy)*

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>09/01/2003</td>
<td>Thru 12/31/2004</td>
</tr>
</tbody>
</table>

H. Sponsoring DOE Program Office

Golden Field Office

I. Subject Categories *(list primary one first)*

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial Technologies</td>
<td></td>
</tr>
<tr>
<td>Keywords</td>
<td>Industrial, Process, Silicon Carbide, Efficiency</td>
</tr>
</tbody>
</table>

J. Description/Abstract

see Executive Summary Attached

K. Intellectual Property/Distribution Limitations

(must select at least one; if uncertain contact your Contracting Officer (CO))

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X 1. UNLIMITED ANNOUNCEMENT (available to U.S. and non-U.S. public; the Government assumes no liability for disclosure of such data)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. COPYRIGHTED MATERIAL: Are there any restrictions based on copyright? □ Yes □ No</td>
</tr>
<tr>
<td></td>
<td>If yes, list the restrictions as retained in your contract</td>
</tr>
<tr>
<td></td>
<td>3. PATENTABLE MATERIAL: THERE IS PATENTABLE MATERIAL IN THE DOCUMENT</td>
</tr>
<tr>
<td></td>
<td>INVENTION DISCLOSURE SUBMITTED TO DOE:</td>
</tr>
<tr>
<td></td>
<td>DOE Docket Number: S-104,399</td>
</tr>
<tr>
<td></td>
<td>(Sections are marked as restricted distribution pursuant to 35 USC 205)</td>
</tr>
<tr>
<td></td>
<td>4. PROTECTED DATA: □ CRADA □ Other</td>
</tr>
<tr>
<td></td>
<td>If other, specify</td>
</tr>
<tr>
<td></td>
<td>Release date (mm/dd/yyyy)</td>
</tr>
<tr>
<td></td>
<td>5. SMALL BUSINESS INNOVATION RESEARCH (SBIR) DATA</td>
</tr>
<tr>
<td></td>
<td>Release date (Required, (No more than 4 years from date listed in part 1.E above))</td>
</tr>
<tr>
<td></td>
<td>6. SMALL BUSINESS TRANSFER (STTR) DATA</td>
</tr>
<tr>
<td></td>
<td>Release date (Required, No more than 4 years from date listed in part 1.E above)</td>
</tr>
<tr>
<td></td>
<td>7. OFFICE OF NUCLEAR ENERGY APPLIED TECHNOLOGY</td>
</tr>
</tbody>
</table>

L. Recipient/Contractor Point of Contact

Contact for additional information (contact or organization name to be included in published citations and who would receive any external questions about the content of the STI Product or the research contained therein)

Tom Briselden, President

Name and/or Position

tbriz@att.net

814-4402604

E-mail

STORM Development LLC

Phone

Organization
Announcement

UNITED STATES DEPARTMENT OF ENERGY (DOE)

Scientific and Technical Information (STI) For Financial Assistance Recipients and Non-M&O/M&I Contractors

PART II: STI PRODUCT MEDIA/FORMAT and LOCATION/TRANSMISSION

(To be completed by Recipient/Contractor)

A. Media/Format Information:

1. **Medium of STI Product IS:**
 - [] Computer medium
 - [] Audiovisual material
 - [x] Electronic Document
 - [] Paper
 - [] No full-text

2. **Size of STI Product**

3. **Specify file format of electronic document being transmitted, indicate:**
 - [] SGML
 - [] HTML
 - [] XML
 - [] PDF Normal
 - [] PDF Image
 - [] WP-Indicate Version (5.0 or greater)
 - [] Platform/operating system
 - [] MS-Indicate Version (5.0 or greater)
 - [] Platform/operating system
 - [] Postscript

4. **If computer medium or audiovisual material**
 - a. **Quantity/type (specify)**
 - b. **Machine compatibility (specify)**
 - c. **Other information about product format a user needs to know:**

B. Transmission Information:

STI Product is being transmitted:

1. **Electronic via Elink**

2. **Via mail or shipment to address indicated in award document**
 - **Paper products, CD-ROM, diskettes, videocassettes, etc.**

2a. **Information product file name**
 - **(of transmitted electronic format)**

PART III: STI PRODUCT REVIEW/RELEASE INFORMATION

(To be completed by DOE)

A. STI Product Reporting Requirement Review:

1. **This deliverable completes all required deliverables for this award**

2. **This deliverable fulfills a technical reporting requirement, but should not be disseminated beyond DOE.**

B. DOE Releasing Official

1. **I verify that all necessary reviews have been completed as described in DOE G 241.1-1A, PART II, SECTION 3.0 and that the STI product should be released in accordance with the intellectual property/distribution limitation above.**

Released by **(name)______________________________**

Date____________________(mm/dd/yyyy)

E-mail______________________________

Phone______________________________
Purpose: DOE F 241.3 provides the Office of Scientific and Technical Information (OSTI) information required to appropriately identify, process, and/or announce and disseminate the results of work funded by the U.S. Department of Energy (DOE). For general information or assistance with this form, contact OSTI at (865) 241-6435, or at the following e-mail address: 241user@adonis.osti.gov.

When to use: Submit this form with each scientific and technical information (STI) Product. Electronic format is the preferred method for submitting the announcement record and STI Product. When submitting electronically, use the electronic version of the form (http://www.osti.gov/elink; discuss with your DOE Contracting Officer).

Describing the data fields: Descriptions of the various DOE F 241.3 data fields, STI Products, format, etc., can be found in ATTACHMENT 3 and other sections of the DOE G 241.1-1A, Guide to the Management of Scientific and Technical Information. Available online at http://www.osti.gov/stip/

DOE Financial Assistance Recipients/Contractors Recipients and Contractors should complete Parts I and II of the form and forward the form along with the STI product to the DOE Contracting Officer who will complete the rest of the form and submit the package to OSTI.

NOTE: Sensitive, proprietary, or other STI Products for which access is restricted by statute or regulation shall not be transmitted via open systems networks (e.g., the Internet) unless authorization and/or encryption has been coordinated with OSTI in advance. This form, unless it in itself is classified, can be transmitted via open systems networks (.e.g, the Internet).

RECORD STATUS - This is a required field. The record status identifies the announcement record or the STI Product as new, or revised. If the record status is not provided, the record is considered "New."

Part I: STI PRODUCT DESCRIPTION (To be completed by Recipient/Contractor)

A. STI PRODUCT IDENTIFIERS.

1. Report/Product Number(s). This is a required field. The unique primary report or product number assigned to the STI Product. If a report number is not provided, the word "NONE" should be entered.

Following are examples of report number formats for multiple volumes, parts, or revisions:

DOE/ID/13734-2
DOE/NE/01834--1-Pt. 1

More than one report number may be provided. Multiple numbers are separated with a semicolon and a space. When more than one number is entered, the first number, considered the primary number, should identify the submitting organization. All other numbers are considered secondary numbers.

2. DOE Award/Contract Number(s). This is a required field. Enter the DOE award/contract number under which the work was funded. Additional DOE award/contract numbers related to the product may be entered. Multiple numbers are separated with a semicolon and a space. When more than one number is entered, the first number is considered the primary number.

3. Other Identifying Number(s). An additional unique identifying number assigned to the STI product (e.g., CRADA numbers, Non-DOE contract numbers). More than one other identifying number may be provided. Multiple numbers are separated with a semicolon and a space.

B. RECIPIENT/CONTRACTOR - This is a required field. Provide the name and location of the organization that performed the research or issued the STI product. More than one organization may be provided; separate multiple with a semicolon and a space.

Example: University of Tennessee, Knoxville, TN

C. STI PRODUCT TITLE - This is a required field. Provide the title exactly as given on the product itself, including part, volume, edition, and similar information.

D. AUTHOR(s) - This is a required field. Provide the name of the author (last name first) of the STI product. More than one author may be provided; separate multiple entries with a semicolon and a space. If an author does not exist, the word "None" should be entered.

Examples: Jones, T.M.; Markay, Arthur R. III

Fields, J.M., ed.

Author(s) E-mail Address(es). Provide the e-mail address for each author. Multiples may be provided; they should be listed in the same order as the authors and should be separated by a semicolon and a space.

E. STI PRODUCT ISSUE DATE/DATE OF PUBLICATION - This is a required field. Provide the date when the information product was published or issued.

F. STI PRODUCT TYPE - This is a required field. It should agree with the reporting requirement identifier in the reporting requirements checklist; federal assistance reporting checklist; or in the statement of work if the product is a required deliverable that warrants accountability.

1. Technical Report. Identify the type of technical report provided.

G. STI PRODUCT REPORTING PERIOD. Specify the beginning and ending dates of the period covered by the STI product.

H. SPONSORING DOE PROGRAM OFFICE - Enter the name or acronym of the DOE Program Office (e.g., Office of Science or SC) providing the funding for the work described in the STI product. For projects funded by more than one Program Office, indicate all sources of the DOE funding in descending order of dollar amount of funding appropriated. Separate multiple program offices with a semicolon and a space. If no sponsoring DOE Program Office is provided, "DOE" will be the sponsor.

I. SUBJECT CATEGORIES - Select one or more categories from the list provided. List the primary one first. A list of subject categories is available at (http://www.osti.gov/elink/).

Keywords. Provide terms which describe the content of the publication. More than one term may be entered; separate multiple terms with a semicolon and a space.

J. DESCRIPTION/ABSTRACT - Provide a clear, concise, and publicly releasable English language summary of the information content of the STI product. The abstract length should be no more than 5,000 characters. If you are utilizing paper media, you may provide via attachment.
K. INTELLECTUAL PROPERTY/DISTRIBUTION LIMITATIONS - This is a required field. STI products should be written for public release; therefore, STI products should not contain proprietary, classified or any information subject to export control. Recipients/Contractors are responsible for notifying their DOE contracting officer if the document contains other than unclassified data before submitting to the DOE address in the award document. Recommendations to restrict access to STI products must have a legal basis or be accompanied by written programmatic guidance. For questions concerning current laws and guidance, refer to Part II or ATTACHMENT 7 of the DOE G 241.1-1A, Guide to the Management of Scientific and Technical Information, or contact your DOE Contracting Officer.

1. Unlimited Announcement. The unrestricted, unlimited distribution of the product (will be made publicly available). The Government assumes no liability for disclosure of such data.

2. Copyrighted Material. A copyright restriction on part or all of the contents of the STI product may affect the reproduction and distribution of the product by OSTI. Any restriction must be specified.

4-6. No special instructions.

7. Office of Nuclear Energy Applied Technology pursuant to 10 CFR 810.

L. RECIPIENT/CONTRACTOR POINT OF CONTACT. Provide the organization or individual(s) name with corresponding contact information who will be included in the published citation as the point of contact and will respond to external questions about the content of the STI product.

Part II. STI PRODUCT MEDIA/FORMAT AND LOCATION/TRANSMISSION
(To be completed by recipient/contractor)

A. MEDIA/FORMAT INFORMATION

1. Medium. This is a required field. Select one of the medium options provided. Note: When announcement record only is submitted, select “No full-text.”

2. Size of STI Product. Provide the total number of pages or other designation which gives an indication of the size of the information product (e.g., 200 pages; 20 images; 3500 kilobytes; 3-3 1/2 inch diskettes).

3. File Format. This is a required field if the STI product is electronic full-text. Select one of the options provided.

4. If Computer Medium or Audiovisual Material (do not include software packages).

a. Indicate the quantity and type of medium, e.g., 2 videocassettes, 1 magnetic tape.

b. Indicate the machine with which the medium is compatible, i.e., with which it can be used (e.g., VHS; IBM PC compatible, hard disk, 8 Megs.)

c. Enter any other information which would be helpful to the user of the STI product (e.g., programming language, file format, etc.)

B. LOCATION/TRANSMISSION INFORMATION

STI PRODUCT IS BEING TRANSMITTED:

1. This is a required field. Provide if the full-text STI product is being transmitted electronically. Indicate if product is being transmitted via Internet-accessible system called Elink at https://www.osti.gov/elink/.

2. This is a required field. Provide an electronic copy of the STI product that is being transmitted via other computer-generated medium or other method. Indicate if product is being transmitted via mail or other shipment method (paper products, CD-ROM, diskettes, videocassettes, etc.). Provide information product filename of transmitted electronic format, if applicable.

Part III: STI PRODUCT REVIEW/RELEASE INFORMATION
(To be completed by DOE)

A. STI PRODUCT REPORTING REQUIREMENT REVIEW

1. This is a required field if all other required STI products have been received for this award by OSTI and this STI product is the final deliverable required according to the technical information reporting requirement.

2. Indicated if the STI product is not suitable for dissemination beyond DOE based on report type or content, it is being submitted because it fulfills a technical information reporting requirement.

B. RELEASEING OFFICIAL - This is a required field. Provide the name and additional information of the site's individual(s) responsible for the appropriate review and release of the STI product. Do not forward this form or the STI product until after it has been reviewed and released for announcement.

OMB BURDEN DISCLOSURE STATEMENT

Public reporting burden for this collection of information is estimated to average 30 minutes per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to the Office of Information, Records and Resource Management, SO-31, FORS, U.S. Department of Energy, Washington, DC 20585 and to the Office of Management and Budget (OMB), Paperwork Reduction Project (1910-1400), Washington, D.C. 20503.
Final Report

Project Title: Advanced Process Heater

Covering Period: September 1, 2003 to December 31, 2004
Date of Report: March 7, 2005

Recipient: STORM Development, LLC.
Award Number: DE-FG36-03GO13016

Working Partners:
STORM Development LLC; Penn State University, Erie; Spinworks LLC; SyCore, Inc.

Cost-Sharing Partners: STORM Development LLC; Spinworks LLC; SyCore, Inc.

Contact: Thomas D. Briselden, 814-440-2604, tbriz@att.net

Project Team: DOE HQ Program Manager, Lisa Barnett
DOE Field Project Officer, Steve Sargent
EXECUTIVE SUMMARY

The Roadmap for Process Heating Technology (March 16, 2001), identified the following priority R&D needs: Improved performance of high temperature materials; Improved methods for stabilizing low emission flames; Heating technologies that simultaneously reduce emissions, increase efficiency, and increase heat transfer.

This Category I award entitled “Proof of Concept of an Advanced Process Heater (APH) for Steel, Aluminum, and Petroleum Industries of the Future” met the technical feasibility goals of: (1) Doubling the heat transfer rates (2) Improving thermal efficiencies by 20%, (3) Improving temperature uniformity by 100 °F and (4) simultaneously reducing NOx and CO2 emissions. The APH address EERE’s mission priority of increasing efficiency/reducing fuel usage in energy intensive industries.

One component of the APH, the SpyroCor™, was commercialized by STORM Development’s partner, Spinworks LLC. Over 2000 SpyroCors™ were sold in 2004 resulting in 480 million BTU’s of energy savings, 20% reduction in NOx and CO2 levels, and 9 jobs in N.W. Pennsylvania. A second component, the HeatCor™, a low-cost high-temperature heat exchanger will be demonstrated by Spinworks in 2005 in preparation for commercial sales in 2006.

The project occurred in the 21st Congressional District of Pennsylvania. Once fully commercialized, the APH energy savings potential is 339 trillion BTUs annually in the U.S. and will process 1.5 million more tons annually without major capital equipment expenditures. Spinworks will commercialize the APH and add over 100 U.S. workers.

To accomplish the objective, STORM Development LLC teamed with Penn State University, SyCore, Inc, Spinworks LLC, and Schunk-INEX, Inc. The project consisted of component engineering and integration of the APH followed by parametric testing. All components of the system were tested in a lab furnace that simulates a full scale industrial installation. The target areas for development include: (1) Scale up STORM’s Finned Stabilized Combustion, (2) Optimization of SyCore’s SiGr Inserts such that the heat transfer on the exhaust leg will match the high luminosity burner leg., (3) Evaluation of the heat transfer characteristics of Schunk-INEX’s finned composite tubes as a heat exchanger, and (4) Design of a system to monitor all components of the APH and control its performance such that the objectives are met.
PROJECT DESCRIPTION

Project Goals:

The original goal of the Advanced Process Heater (APH) is to exceed the performance of current heating technology by: (1) Doubling the heat transfer rates (2) Improving thermal efficiencies by 20%, (3) Improving temperature uniformity by 50°F to 100°F and (4) simultaneously reduce NO\textsubscript{x} and CO\textsubscript{2} emissions.

To accomplish these goals, STORM Development LLC will team with Penn State University, SyCore, Inc, Spinworks LLC, and Schunk-INEX, Inc. on a Category I project. The project will consist of component engineering and integration of the APH followed by parametric testing. All components of the system will be tested in a lab furnace that simulates a full scale industrial installation. The target areas for development include: (1) Scale up STORM’s Finned Stabilized Combustion, (2) Optimization of SyCore’s SiGr Inserts such that the heat transfer on the exhaust leg will match the high luminosity burner leg., (3) Evaluation of the heat transfer characteristics of Schunk-INEX’s finned composite tubes as a heat exchanger, and (4) Design of a system to monitor all components of the APH and control its performance such that the objectives are met.

Project Objectives:

In order to achieve the efficiency, heat release, and emissions targets, The Advanced Process Heater addressed the following technical issues:

1. STORM’s Finned Stabilized Combustion will be required to increase the combustion intensity in the radiant tube by 150% while promoting temperature uniformity of ±10°F and low emissions (< 10 ppm). Traditionally with high intensity burners, radiant tube efficiency is reduced due to short residence times of combustion gases and low heat transfer coefficients on the inside of the tube.

2. SyCore SiC Inserts will increase the heat transfer on the exhaust leg to match the high luminosity burner leg. Heat Transfer coefficients need to be increased by 225% with the use of high emissivity inserts. The use of SyCore Inserts is a proven method for increasing the heat transfer off the exhaust leg of a radiant tube. However, its efficiency impact is generally limited to 20% since it can not reduce exhaust temperatures below the furnace or process heater temperature.

3. Finned/Multi-Pass Composite Heat Exchanger will be required to preheat combustion air to temperatures over 1200°F in order to produce an overall thermal efficiency above 75%. In doing so, an energy savings exceeding 50% can result. High Combustion Intensities generated by the burner, High Heat Transfer Rates generated by the SiGr Inserts, and High Preheat Air Temperatures generated by the recuperator all need higher operating temperatures than the 2100°F limit of metal alloy tubes.

4. A Schunk-INEX Composite U-Tube will be required to operate at temperatures of 2450°F while tolerating extreme thermal shock. Only the burner leg of the tube will need to be finned such that the high intensity flame can be established within the fins.

Flame stabilization in a finned tube was proven at Cleveland State University. It promotes exceptional temperature uniformity (±2°F) and low NO\textsubscript{x} levels (< 10 ppm) due to high heat transfer surface areas.

Work Performed:

Summary:

Task 1 – Scale up of Flame Stabilization Concept

1.1 Design Finned Tube Heating System
 - Used a clear quartz tube to provide a direct method for evaluating flames.
1.2 Perform Parametric Testing
 - Used helical inserts in place of finned tube to enhance flame stability. Achieved heat flux of 153 BTU/hr-in3
 - Purchased thermal imaging camera for temperature uniformity study.
1.3 Analyze Results of Flame Stabilization Scale up
 - New burner was designed utilizing single tube burner for both air and fuel mixture delivery and hollow helical shape.
Task 2 – Design and Test APH for Project Goals

2.1 Design APH
- Incorporated preliminary designs for SiC Heat Exchanger.
- Increased surface area of new heat exchanger by a factor of 2.

2.2 Enhance Test Furnace Capabilities
- Incorporated thermal imaging camera in furnace temperature measurement system.
- Installed Advanced gas analysis system to measure NO_x, CO, CO_2, O_2, and temperature.

2.3 Install and Test APH and Analyze Results
- Used SiC Heat Exchanger to obtain pre heat temperatures up to 850°F which increased efficiency to over 70%.
- Obtained U-tube uniformity within 100°F.

2.4 Modify System and Retest
- Modified heat exchanger to single piece design.
- Reduced NO_x levels to under 90 ppm.

Task 1.1 Design Finned Tube Heating System

A straight 4.5 inch (114 mm) diameter straight finned tube heating system was designed in the month of September 2003. A technical representation of the system is shown in Figure 1. Key design features of the system include: (1) use of a clear quartz tube to allow for flame visualization, (2) identification of an alternate method to simulate the tube fins, and (3) incorporation of an active loading system into the test furnace.

The active loading system duplicates the exact material loading conditions of an industrial furnace. Stainless steel chains are moved through the test furnace using a rotary drum. The steel is heated to 1800 °F then quenched and returned back through the furnace. This system provides a very close approximation of the heat transfer conditions present in an industrial furnace. The impact of the finned heating system can be properly analyzed under these conditions.

![Active Loading System](image)

Figure 1: Technical representation of the straight finned tube heating system. The clear quartz radiant tube will be used to evaluate flame stabilization. The loading system and furnace geometry represents an accurate heat transfer simulation of an industrial furnace.

Task 1.2 Perform Parametric Testing

An initial series of tests were performed to establish flame stability and temperature uniformity. The flame was stable over a wide range of air fuel ratios from 10:1 to 16:1. Air and fuel distribution was accomplished by using a single tube. Air flowed to the outside of the tube, and natural gas flowed down the middle. Standard spark ignition and flame safety equipment was used during the test.
Previously, a temperature uniformity of $\pm 18^\circ$ F (10° C) and a heat flux of 125 BTU/hr-in2 was achieved. The goal for the project was $\pm 10^\circ$ F (5.5° C) and 150 BTU/hr-in2. Parametric testing continued on the system to identify the key parameters that impact these goals. The result was a temperature uniformity of $\pm 10^\circ$ F (5.5° C), shown below (Figure 2), and a heat flux of 153 BTU/hr-in2. This was achieved using a variable twist rate design from 63° to 32°.

STORM was going meet the project goals by stabilizing the flame within short fins attached to the tube. The scale-up of the tube from 2” I.D. to 4.5” I.D. resulted in a narrow range of operation and an un-stable flame. STORM has prepared a disclosure on a unique expansion of this concept. The reader may contact the PI to further discuss this concept.

![Figure 2: Temperature profile along straight tube operating at a heat flux of 153, 260 BTU/hr-in2.](image)

To assist in the analysis of the flame stabilization concept, STORM purchased an infrared thermal imaging camera. This camera is used to provide a complete thermal profile of the tube and heat flux measurements (Figure 3). The camera has been extensively used in the APH test furnace.

![Figure 3: Infrared image of a flame stabilized inside a radiant tube.](image)
Task 1.3 Analyze results of flame stabilization scale-up

Data from Task 1.2 was analyzed and used to make a significant modification to flame stabilization concept. Early tests required the use of a partial premix system to stabilize the flame. This concept eliminates partial premix, allows for a larger range of turndown, expands the allowable twist rates, and makes flame detection easier.

The new burner design was incorporated to increase flame stability. The new burner consists of a single tube mixture system where air flows down the outside of the tube, while gas flows through the middle. A SpyroCor is incorporated into the design such that the proper air and gas flow is distributed to maximize flame stability.

Task 2.1: Design APH

The primary focus of the APH design was on the heat exchanger. This encompassed two areas: (1) increasing heat transfer surface area per unit volume, and (2) making a thin walled heat exchanger out of silicon carbide. A second concept disclosure has been prepared for the Department of Energy. Two key goals were achieved: (1) a 1/16" thick silicon carbide heat exchanger wall was achieved and (2) an increase in heat transfer surface area by a factor of 2.5.

Task 2.2 Enhance Test Furnace Capabilities

STORM in partnership with Spinworks began enhancing the test furnace shown in Figure 5. This furnace is used to test the Advance Process Heater. The APH combines the flame stabilization method with a silicon carbide radiant tube and an advanced multi-pass heat exchanger. The final elements left to the test furnaces completion was incorporating the thermal imaging camera and advanced gas analysis system for measuring NO\textsubscript{x}, CO, CO\textsubscript{2}, O\textsubscript{2}, and temperature. Figure 6 shows a typical image of the APH in operation, taken with the thermal camera.

![Figure 5: Advanced Process Heater Test Furnace utilizing a silicon carbide composite radiant U-tube. The furnace utilizes an active loading system to simulate a real industrial operating environment of 1800 °F (982 °C). The tube is full scale. One difference between this system and one found in a steel mill is the number of tubes.](image-url)
Task 2.3 Install and Test APH and Analyze Results

The installed APH is shown in Figure 7. The initial scope of work included purchasing a finned multi-pass heat exchanger from either Blasch or Schunk-INEX. Due to a change of direction in these companies, it was necessary for STORM and Spinworks to develop its own heat exchanger. The innovative heat exchanger utilizes silicon carbide material for high temperature operation and excellent thermal shock properties. Its unique design increases the heat transfer surface area by 2 to 5 times that over traditional heat exchangers with minimal pressure drop. The current design obtained preheat air temperatures up to 850°F.

A proof-of-concept was performed on the helical heat exchanger. A ½ length (due to manufacturing furnace limitations) heat exchanger was tested with a surface area of two and three times standard. An effectiveness of 33% and 47% were achieved. Based on these results, a full length heat exchanger with a 3 times standard surface area will produce an effectiveness approaching 80%. Pressure drops on the order of 5 to 10 inches w.c. resulted.

The proposed heat exchanger for the APH will closely couple the heat exchanger to the radiant tube and flame stabilizer to minimize these losses and increase the overall effectiveness of the heat exchanger.
Task 2.4 Modify System and Retest

Modifications to the APH focused on changing the heat exchanger to obtain preheat air temperatures of 1200 °F.

The last quarter of the project primarily focused on the multi pass heat exchanger. Significant modifications were made to improve the overall efficiency. The heat exchanger was converted to a shared web to promote better heat transfer. Data from continued testing of the APH with the shared web heat exchanger proved that 850°F pre-heat temperatures can be easily achieved. NOx levels dropped dramatically to 90 ppm and lower.

Patent disclosures are being prepared for the heat exchanger concept. For further information on the heat exchanger, please contact the P.I., Tom Briselden at tbriz@att.net.

Appendices

Appendix A. Final Task Schedule
Appendix B. Final Spending Schedule
Appendix C. Final Cost Share Contributions
Appendix D. Energy Savings Metrics
Final Task Schedule

<table>
<thead>
<tr>
<th>Task Number</th>
<th>Task Description</th>
<th>Original Planned</th>
<th>Revised Planned</th>
<th>Actual</th>
<th>Percent Complete</th>
<th>Progress Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milestone 1</td>
<td>Scale up of flame stabilization concept.</td>
<td>12/31/03</td>
<td>01/31/04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 1.1</td>
<td>Design finned tube heating system</td>
<td>05/31/03</td>
<td>10/31/03</td>
<td>10/31/03</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Task 1.2</td>
<td>Perform parametric testing</td>
<td>10/31/03</td>
<td>12/31/03</td>
<td>02/15/04</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Task 1.3</td>
<td>Analyze results of flame stabilization scale-up</td>
<td>12/31/03</td>
<td>01/31/04</td>
<td>04/15/04</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Milestone 2</td>
<td>Design and Test APH for project goals.</td>
<td>12/31/04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 2.1</td>
<td>Design APH</td>
<td>02/29/04</td>
<td>05/30/04</td>
<td></td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Task 2.2</td>
<td>Enhance Test Furnace Capabilities</td>
<td>03/31/04</td>
<td>05/28/04</td>
<td></td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Task 2.3</td>
<td>Install and Test APH and Analyze Results</td>
<td>08/31/04</td>
<td>9/31/04</td>
<td></td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Task 2.4</td>
<td>Modify System and Retest</td>
<td>012/31/04</td>
<td>12/31/04</td>
<td></td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>
Appendix B

Final Spending Schedule

Project Period: 04/01/03 to 12/31/04
Current Quarter: 10/01/04 to 12/31/04

Spending Schedule

<table>
<thead>
<tr>
<th>Task</th>
<th>Approved Budget</th>
<th>Project Expenditures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This Quarter</td>
<td>Cumulative to Date</td>
</tr>
<tr>
<td>Task 1.1 – Design finned tube heating system</td>
<td>3,929</td>
<td>0</td>
</tr>
<tr>
<td>Task 1.2 – Perform parametric testing</td>
<td>15,122</td>
<td>0</td>
</tr>
<tr>
<td>Task 1.3 – Analyze results of flame stabilization scale-up</td>
<td>2,658</td>
<td>0</td>
</tr>
<tr>
<td>Task 2.1 – Design APH</td>
<td>6,458</td>
<td>0</td>
</tr>
<tr>
<td>Task 2.2 – Enhance test furnace capabilities</td>
<td>18,568</td>
<td>0</td>
</tr>
<tr>
<td>Task 2.3 – Install and test APH and analyze results</td>
<td>26,083</td>
<td></td>
</tr>
<tr>
<td>Task 2.4 – Modify system and retest</td>
<td>4,864</td>
<td>4864</td>
</tr>
<tr>
<td>Total</td>
<td>77,681</td>
<td>4864</td>
</tr>
<tr>
<td>DOE Share</td>
<td>40,000</td>
<td>0</td>
</tr>
<tr>
<td>Cost Share</td>
<td>37,681</td>
<td>4864</td>
</tr>
</tbody>
</table>
Appendix C

Final Cost Share Contributions

Cost Share Contributions

<table>
<thead>
<tr>
<th>Funding Source</th>
<th>Approved Cost Share</th>
<th>This Quarter</th>
<th>Cumulative to Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cash</td>
<td>In-Kind</td>
<td>Cash</td>
</tr>
<tr>
<td>STORM Development</td>
<td>9,466</td>
<td>13,300</td>
<td>4864</td>
</tr>
<tr>
<td>SyCore, Inc.</td>
<td></td>
<td>5,340</td>
<td></td>
</tr>
<tr>
<td>INEX</td>
<td></td>
<td>9,575</td>
<td></td>
</tr>
<tr>
<td>Penn State University</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>9,466</td>
<td>28,215</td>
<td>2,600</td>
</tr>
</tbody>
</table>

| Cumulative Cost Share Contributions | 37,681 |
Appendix D

Energy Savings Metrics

According to market research by The Gas Research Institute, the market consists of 250,000 radiant tubes in 25,000 furnaces. The unit chosen for analysis is 10 radiant tubes or 10 APHs processing 5 tons of metal per hour. This would represent the loading of a typical steel processing furnace such as strip annealing or heat treating. The energy required to simply heat this amount of metal to 1400 °F with a .12 BTU/lb-°F specific heat is 1.3 million BTU/hr of energy (this number does not include an efficiency factor). The table below represents the four scenarios with typical efficiency factors: (1) basic unit - 35%, (2) unit with standard energy enhancements such as a plug heat exchanger – 50%, (3) state-of-the-art energy efficiency unit – 65%, and (4) application of the APH – 85%.

<table>
<thead>
<tr>
<th></th>
<th>Basic Unit</th>
<th>Standard</th>
<th>State-of-the-art</th>
<th>Advanced Process Master</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td>35%</td>
<td>50%</td>
<td>65%</td>
<td>85%</td>
</tr>
<tr>
<td>Radiant tubes/unit</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Production rate, lb/hr</td>
<td>8000</td>
<td>8000</td>
<td>8000</td>
<td>8000</td>
</tr>
<tr>
<td>Specific Heat, BTU/lb-°F</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>Process Temperature, °F</td>
<td>1400</td>
<td>1400</td>
<td>1400</td>
<td>1400</td>
</tr>
<tr>
<td>Net Energy, BTU/hr</td>
<td>1,344,000</td>
<td>1,344,000</td>
<td>1,344,000</td>
<td>1,344,000</td>
</tr>
<tr>
<td>Gross Energy per Unit, BTU/hr</td>
<td>3,840,000</td>
<td>2,688,000</td>
<td>2,067,092</td>
<td>1,581,176</td>
</tr>
<tr>
<td>Annual Operating Hours</td>
<td>6,000</td>
<td>6,000</td>
<td>6,000</td>
<td>6,000</td>
</tr>
<tr>
<td>Annual Energy Use per Unit, million BTUs</td>
<td>23,040</td>
<td>16,128</td>
<td>12,408</td>
<td>9,487</td>
</tr>
<tr>
<td>Annual Energy Use for Market, trillion BTUs</td>
<td>576</td>
<td>403</td>
<td>319</td>
<td>237</td>
</tr>
<tr>
<td>Annual Energy Savings Matrix, trillion BTU's</td>
<td>173</td>
<td>206</td>
<td>339</td>
<td>39</td>
</tr>
<tr>
<td>Basic Unit vs. Std, S-O-A, APH</td>
<td>93</td>
<td>106</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Standard vs. S-O-A, APH</td>
<td>93</td>
<td>106</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>State-of-the-art vs. APH</td>
<td>93</td>
<td>106</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>ALL (weighted) vs. APH</td>
<td>60%</td>
<td>25%</td>
<td>15%</td>
<td>25%</td>
</tr>
</tbody>
</table>

A basic unit is a simple U-tube and burner combination. A standard efficiency upgrade would include a plug-in type heat exchanger and perhaps a burner upgrade. The state-of-the-art unit would be an advanced tube/heat exchanger design. These units would incorporate finned heat exchanger components and recirculation burner designs.

The annual energy savings matrix compares the basic unit to a standard, state-of-the-art and APH concepts. The annual fuel saving potential for process heating equipment is between 73 and 339 trillion BTU's. This is based on converting 250,000 radiant tubes. With an average energy cost of $5/million BTU, the potential savings to the industrial market using radiant tubes is between 254 million and 1.7 trillion dollars.

An estimated 60% of the market consists of a basic radiant tube, 25% with standard up-grades, and the remaining 15% state-of-the-art. A per unit analysis is shown in the following table for the years 2008 through 2015.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GROWTH RATE</td>
<td>200%</td>
<td>150%</td>
<td>100%</td>
<td>75%</td>
<td>50%</td>
<td>25%</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>ANNUAL SALES</td>
<td>500,000</td>
<td>1,500,000</td>
<td>3,750,000</td>
<td>7,500,000</td>
<td>13,125,000</td>
<td>19,867,500</td>
<td>24,609,375</td>
<td>27,070,313</td>
</tr>
<tr>
<td>UNITS/YEAR</td>
<td>25</td>
<td>75</td>
<td>188</td>
<td>375</td>
<td>656</td>
<td>984</td>
<td>1,230</td>
<td>1,354</td>
</tr>
<tr>
<td>ENERGY SAVINGS/UNIT, million BTU's</td>
<td>19,717</td>
<td>19,717</td>
<td>19,717</td>
<td>19,717</td>
<td>19,717</td>
<td>19,717</td>
<td>19,717</td>
<td>19,717</td>
</tr>
<tr>
<td>ANNUAL ENERGY SAVINGS, trillion BTU's</td>
<td>0.5</td>
<td>1.5</td>
<td>3.7</td>
<td>7.4</td>
<td>12.9</td>
<td>19.4</td>
<td>24.3</td>
<td>26.7</td>
</tr>
<tr>
<td>CUMULATIVE ENERGY SAVINGS, trillion BTU's</td>
<td>2.0</td>
<td>5.2</td>
<td>11.1</td>
<td>19.8</td>
<td>26.7</td>
<td>33.5</td>
<td>39.8</td>
<td>46.5</td>
</tr>
</tbody>
</table>