Novel Mass Spectrometry Mutation Screening for Contaminant Impact Analysis

PDF Version Also Available for Download.

Description

Due to the limited budget of waste clean-up for all DOE contamination sites, it is critical to have a sound risk analysis with strong scientific basis to set priority for waste clean-up. In the past, the priority was often determined mostly by the type and quantity of pollutants and the observation of cancer rate increase. Since human cancers can be caused by various reasons in addition to environmental contamination, a rigorous study to find the relationship between specific contaminants and cancer is critically important for setting up the priority for waste clean-up. In addition, a contaminated site usually contain many ... continued below

Physical Description

vp.

Creation Information

Chen, Winston Chung-Hsuan & Lee, Kai-Lin September 30, 2000.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

  • Oak Ridge National Laboratory
    Publisher Info: Oak Ridge National Lab., Oak Ridge, TN (United States)
    Place of Publication: Oak Ridge, Tennessee

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Due to the limited budget of waste clean-up for all DOE contamination sites, it is critical to have a sound risk analysis with strong scientific basis to set priority for waste clean-up. In the past, the priority was often determined mostly by the type and quantity of pollutants and the observation of cancer rate increase. Since human cancers can be caused by various reasons in addition to environmental contamination, a rigorous study to find the relationship between specific contaminants and cancer is critically important for setting up the priority for waste clean-up. In addition, a contaminated site usually contain many different pollutants. However, it can be only a few specific pollutants are carcinogenic chemicals which are responsible for most cancers. Clean-up of small quantity of critical pollutants instead of the entire pollutant site can save significant decontamination cost. Since a few anti-tumor genes such as p53 and ras genes are highly conserved among various animals and mutation of these genes have been associated with many human cancers, it is very valuable to find the relationship between specific contaminant and specific cancer. Since it is not possible to pursue any human on the relationship of cancer and specific pollutant under well defined experimental conditions, it is desirable to pursue experiments on animals such as fish and mice to find out the relationship of mutation of p53 gene and specific contaminant. It is also required that the sequence of the region of p53 gene in animal is same as human being. Mutations due to pollutant can happen at various sites and only occur at a small percentage. In order to confirm the relationship between specific pollutant and mutation, a very large number of DNA samples need to be carefully analyzed. In the past, nearly all DNA analyses were pursued by gel electrophoresis. It is relatively slow and expensive. It is not feasible to obtain the relationship of mutations with specific contaminant with present DNA analysis technology. Thus, our approach is to develop novel new DNA technologies which can potentially achieve rapid, reliable and inexpensive DNA analysis for environmental applications. The objective of this program is to develop innovative mass spectrometry technology to achieve fast mutation screening and to reveal the linkage between gene mutation and contaminants. Mass spectrometry has the potential to achieve very fast speed sample analysis.New innovative approaches for improving mass resolution and detection sensitivity were pursued to help to achieve rapid DNA screening. Allele specific polymerase chain reaction (ASPCR) coupled with mass spectrometry for DNA mutation detection was also pursued. This technology was applied to wildlife species such as fish for the genotoxic effect of hazardous waste to be assessed at DNA level.

Physical Description

vp.

Source

  • Other Information: PBD: 30 Sep 2000

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 30, 2000

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 21, 2016, 3:18 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Chen, Winston Chung-Hsuan & Lee, Kai-Lin. Novel Mass Spectrometry Mutation Screening for Contaminant Impact Analysis, report, September 30, 2000; Oak Ridge, Tennessee. (digital.library.unt.edu/ark:/67531/metadc779711/: accessed September 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.