Toward a Diurnal Climatology of Cold-Season Turbulence Statistics in Continental Stratocumulus as Observed by the Atmospheric Radiation Millimeter- Wavelength Cloud Radars

PDF Version Also Available for Download.

Description

Numerous observational studies of marine stratocumulus have demonstrated a pronounced diurnal cycle. At night, longwave flux divergence at the top of the cloud drives negatively buoyant eddies that tend to keep the boundary layer well mixed. During the day, solar absorption by the cloud tends to reduce the turbulent intensity and often decouples the planetary boundary layer (PBL) into cloud- and sub-cloud circulations. The delicate balance between turbulent intensity, entrainment, and fluxes dictates cloud geometry and persistence, which can significantly impact the shortwave radiation budget. Millimeter-wavelength cloud radars (MMCRs) have been used to study the turbulent structure of boundary layer ... continued below

Physical Description

vp.

Creation Information

Mechem, D.B.; Kogan, Y.L.; Childers, M.E. & Donner, K.M. March 18, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Numerous observational studies of marine stratocumulus have demonstrated a pronounced diurnal cycle. At night, longwave flux divergence at the top of the cloud drives negatively buoyant eddies that tend to keep the boundary layer well mixed. During the day, solar absorption by the cloud tends to reduce the turbulent intensity and often decouples the planetary boundary layer (PBL) into cloud- and sub-cloud circulations. The delicate balance between turbulent intensity, entrainment, and fluxes dictates cloud geometry and persistence, which can significantly impact the shortwave radiation budget. Millimeter-wavelength cloud radars (MMCRs) have been used to study the turbulent structure of boundary layer stratocumulus (e.g. Frisch et al. 1995; Kollias and Albrecht 2000). Analysis is confined to nondrizzling or lightly drizzling cloud systems for which precipitation contamination is negligible. Under such assumptions the Doppler velocity field becomes a proxy for vertical velocity. Prior research has mainly consisted of a few case studies of specific cloud systems using radar scan strategies optimized for this particular cloud type. The MMCR operating at the Southern Great Plains Atmospheric Radiation Measurement Climate Research Facility is broadly configured to be able to detect many different cloud types over a broad range of reflectivities and altitudes, so it is not specifically optimized for PBL clouds. Being in more-or-less continuous operation since the end of 1996, it does, however, have the advantage of long data coverage, which suggests that statistically significant measures of the diurnal cycle of turbulence should be attainable. This abstract summarizes the first few steps toward this goal, using 7 months of cold season MMCR data.

Physical Description

vp.

Notes

OSTI as DE00841470

Source

  • Fifteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting, Daytona Beach, FL (US), 03/14/2005--03/18/2005

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: none
  • Grant Number: 144880-A-Q1
  • Office of Scientific & Technical Information Report Number: 841470
  • Archival Resource Key: ark:/67531/metadc779680

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 18, 2005

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • March 24, 2016, 3:06 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Mechem, D.B.; Kogan, Y.L.; Childers, M.E. & Donner, K.M. Toward a Diurnal Climatology of Cold-Season Turbulence Statistics in Continental Stratocumulus as Observed by the Atmospheric Radiation Millimeter- Wavelength Cloud Radars, article, March 18, 2005; United States. (digital.library.unt.edu/ark:/67531/metadc779680/: accessed October 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.