Mechanisms of enhanced cell killing at low doses: Implications for radiation risk

PDF Version Also Available for Download.

Description

Our overall aim is to gather understanding of the mechanisms underlying low-dose hyperradiosensitivity (HRS) and induced radioresistance (IRR). There is now some direct evidence that this dose-dependent radiosensitivity phenomenon reflects changes in the amount, rate or type of DNA repair, rather than indirect mechanisms such as modulation of cell-cycle progression, growth characteristics or apoptosis. There is also indirect evidence that cell survival-related HRS/IRR in response to single doses might be a manifestation of the same underlying mechanism that determines the well-known adaptive response in the two-dose case, thus HRS can be removed by prior irradiation with both high- and low-LET ... continued below

Physical Description

vp.

Creation Information

Joiner, Michael C.; Johnston, Peter J.; Marples, Brian; Scott, Simon D. & Wilson, George D. June 1, 2001.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Our overall aim is to gather understanding of the mechanisms underlying low-dose hyperradiosensitivity (HRS) and induced radioresistance (IRR). There is now some direct evidence that this dose-dependent radiosensitivity phenomenon reflects changes in the amount, rate or type of DNA repair, rather than indirect mechanisms such as modulation of cell-cycle progression, growth characteristics or apoptosis. There is also indirect evidence that cell survival-related HRS/IRR in response to single doses might be a manifestation of the same underlying mechanism that determines the well-known adaptive response in the two-dose case, thus HRS can be removed by prior irradiation with both high- and low-LET radiations as well as a variety of other stress-inducing agents such as hydrogen peroxide and chemotherapeutic agents. Our goals in this project are therefore: 1. Identify which aspects of DNA repair (amount, rate and type) determine HRS/IRR, 2. Investigate the known link we have discovered between the extent of HRS/IRR and position in the cell cycle, focusing on changes in DNA structure and conformation which may modulate DNA repair, 3. Use the results from studies in (1) and (2) to distinguish, if necessary, between HRS/IRR and the adaptive response. The aim is to finally determine if these are separate or interlinked phenomena. Use the results from studies in (1), (2) and (3) to propose a mechanism to explain HRS/IR

Physical Description

vp.

Source

  • Other Information: PBD: 1 Jun 2001

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: EMSP-69981--2001
  • Grant Number: FG07-99ER62878
  • DOI: 10.2172/833483 | External Link
  • Office of Scientific & Technical Information Report Number: 833483
  • Archival Resource Key: ark:/67531/metadc779624

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 2001

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 21, 2016, 6:39 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Joiner, Michael C.; Johnston, Peter J.; Marples, Brian; Scott, Simon D. & Wilson, George D. Mechanisms of enhanced cell killing at low doses: Implications for radiation risk, report, June 1, 2001; United States. (digital.library.unt.edu/ark:/67531/metadc779624/: accessed November 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.