SEPARATION OF FISCHER-TROPSCH WAX PRODUCTS FROM ULTRAFINE IRON CATALYST PARTICLES

PDF Version Also Available for Download.

Description

In this reporting period, a fundamental filtration study was continued to investigate the separation of Fischer-Tropsch Synthesis (FTS) liquids from iron-based catalyst particles. The overall focus of the program is with slurry-phase FTS in slurry bubble column reactor systems. Hydrocarbon products must be separated from catalyst particles before being removed from the reactor system. An efficient wax product/catalyst separation system is a key factor for optimizing operating costs for iron-based slurry-phase FTS. Previous work has focused on catalyst particle attrition and the formation of ultra-fine iron carbide and/or carbon particles. With the current study, we are investigating how the filtration ... continued below

Physical Description

41 pages

Creation Information

Neathery, James K.; Jacobs, Gary & Davis, Burtron H. September 30, 2004.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

In this reporting period, a fundamental filtration study was continued to investigate the separation of Fischer-Tropsch Synthesis (FTS) liquids from iron-based catalyst particles. The overall focus of the program is with slurry-phase FTS in slurry bubble column reactor systems. Hydrocarbon products must be separated from catalyst particles before being removed from the reactor system. An efficient wax product/catalyst separation system is a key factor for optimizing operating costs for iron-based slurry-phase FTS. Previous work has focused on catalyst particle attrition and the formation of ultra-fine iron carbide and/or carbon particles. With the current study, we are investigating how the filtration properties are affected by these chemical and physical changes of the catalyst slurry during activation/synthesis. The shakedown phase of the pilot-scale filtration platform was completed at the end of the last reporting period. A study of various molecular weight waxes was initiated to determine the effect of wax physical properties on the permeation rate without catalyst present. As expected, the permeation flux was inversely proportional to the nominal average molecular weight of the polyethylene wax. Even without catalyst particles present in the filtrate, the filtration membranes experience fouling during an induction period on the order of days on-line. Another long-term filtration test was initiated using a batch of iron catalyst that was previously activated with CO to form iron carbide in a separate continuous stirred tank reactor (CSTR) system. The permeation flux stabilized more rapidly than that experienced with unactivated catalyst tests.

Physical Description

41 pages

Notes

OSTI as DE00835648

Source

  • Other Information: PBD: 30 Sep 2004

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: NONE
  • Grant Number: FC26-03NT41965
  • DOI: 10.2172/835648 | External Link
  • Office of Scientific & Technical Information Report Number: 835648
  • Archival Resource Key: ark:/67531/metadc779511

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 30, 2004

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • Jan. 3, 2017, 1:28 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 6

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Neathery, James K.; Jacobs, Gary & Davis, Burtron H. SEPARATION OF FISCHER-TROPSCH WAX PRODUCTS FROM ULTRAFINE IRON CATALYST PARTICLES, report, September 30, 2004; United States. (digital.library.unt.edu/ark:/67531/metadc779511/: accessed November 15, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.