Failure Analysis of 6.8 Evaporator Thermowell

PDF Version Also Available for Download.

Description

The Savannah River Technology Center Materials technology Section was requested to determine the cause of failure for a resistance temperature device and thermowell assembly that was used in the 6.8 Low Activity Waste evaporator. A methodical and well planned approach was used for the failure analysis task with special precautions because of the high radiation and contamination levels. Two sections of the failed assembly were selected for thorough analysis, the bottom of the inner tube with the end-cap and a piece of inner tube at the vapor/waste interface. The failure analysis consisted of macroscopic examination and metallographic analysis. Intergranular attack ... continued below

Physical Description

vp.

Creation Information

MICKALONIS, JOHNI. June 1, 2004.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The Savannah River Technology Center Materials technology Section was requested to determine the cause of failure for a resistance temperature device and thermowell assembly that was used in the 6.8 Low Activity Waste evaporator. A methodical and well planned approach was used for the failure analysis task with special precautions because of the high radiation and contamination levels. Two sections of the failed assembly were selected for thorough analysis, the bottom of the inner tube with the end-cap and a piece of inner tube at the vapor/waste interface. The failure analysis consisted of macroscopic examination and metallographic analysis. Intergranular attack (IGA) was found to be the primary corrosion mechanism that led to eventual failure. IGA of the end cap occurred because of a presumed preferential microstructure and accelerated the corrosion rate over that of inner-tube side wall. Once the end cap was breached, the waste quickly attacked the RTD components, leading to the low resistance to ground readings that indicated the initial RTD malfunction. A metallographic analysis of an unexposed end cap is recommended to confirm the suspect microstructure.

Physical Description

vp.

Source

  • Other Information: PBD: 1 Jun 2004

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: WSRC-TR-2004-00075
  • Grant Number: AC09-96SR18500
  • DOI: 10.2172/829693 | External Link
  • Office of Scientific & Technical Information Report Number: 829693
  • Archival Resource Key: ark:/67531/metadc779488

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 2004

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • May 5, 2016, 1:52 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 7

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

MICKALONIS, JOHNI. Failure Analysis of 6.8 Evaporator Thermowell, report, June 1, 2004; South Carolina. (digital.library.unt.edu/ark:/67531/metadc779488/: accessed August 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.