Canted undulator front-end exit-mask flow-induced vibration measurements.

PDF Version Also Available for Download.

Description

All of the high-heat-load critical components in the new canted-undulator front-end (CU FE) design use wire-coil inserts inside of the cooling channels to significantly enhance heat transfer. Wire-coil inserts have replaced the copper-mesh inserts used in previous front-end high-heat-load critical-component designs. The exit mask, the most downstream component in the CU FE line relative to the x-ray beam path, has an exit aperture of 2 mm vertical x 3 mm horizontal and is the most sensitive component, in terms of final beam stability, of all of the CU FE components. In general, final beam stability is determined by the storage-ring ... continued below

Creation Information

Collins, J.; Doose, C. L.; Attig, J. N. & Baehl, M. M. November 10, 2004.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

All of the high-heat-load critical components in the new canted-undulator front-end (CU FE) design use wire-coil inserts inside of the cooling channels to significantly enhance heat transfer. Wire-coil inserts have replaced the copper-mesh inserts used in previous front-end high-heat-load critical-component designs. The exit mask, the most downstream component in the CU FE line relative to the x-ray beam path, has an exit aperture of 2 mm vertical x 3 mm horizontal and is the most sensitive component, in terms of final beam stability, of all of the CU FE components. In general, final beam stability is determined by the storage-ring output-beam stability and not by the CU FE components. Although front-end components are not very sensitive to vibration, several measurements have been performed to assess the flow-induced vibration associated with the CU FE exit mask. Results yield only 0.16 {micro}mrms vertical displacement and 1.0 {micro}mrms horizontal displacement under worst-case conditions. The maximum displacement values are very small compared to the aperture size, and therefore flow-induced vibration has a negligible effect on the CU FE output beam stability. More general measurements have also been performed to directly compare flow-induced vibration in an open, unrestricted tube relative to the same tube containing either a wire-coil insert or a copper-mesh insert. Operational performance data are presented for these heat-transfer-enhancing inserts, and the advantages and disadvantages, in terms of selection criteria, are discussed.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: ANL/APS/LS-306
  • Grant Number: W-31-109-ENG-38
  • DOI: 10.2172/843175 | External Link
  • Office of Scientific & Technical Information Report Number: 843175
  • Archival Resource Key: ark:/67531/metadc779466

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • November 10, 2004

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • Dec. 9, 2016, 10:55 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Collins, J.; Doose, C. L.; Attig, J. N. & Baehl, M. M. Canted undulator front-end exit-mask flow-induced vibration measurements., report, November 10, 2004; Argonne, Illinois. (digital.library.unt.edu/ark:/67531/metadc779466/: accessed December 14, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.