Supercritical Carbon Dioxide-Soluble Ligands for Extracting Actinide Metal Ions from Porous Solids

PDF Version Also Available for Download.

Description

Numerous types of actinide-bearing waste materials are found throughout the DOE complex. Most of these wastes consist of large volumes of non-hazardous materials contaminated with relatively small quantities of actinide elements. Separation of these wastes into their inert and radioactive components would dramatically reduce the costs of stabilization and disposal. For example, the DOE is responsible for decontaminating concrete within 7000 surplus contaminated buildings. The best technology now available for removing surface contamination from concrete involves removing the surface layer by grit blasting, which produces a large volume of blasting residue containing a small amount of radioactive material. Disposal of ... continued below

Physical Description

vp.

Creation Information

Dietz, Mark L. June 1, 2001.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

  • Argonne National Laboratory
    Publisher Info: Argonne National Lab., Argonne, IL (United States)
    Place of Publication: Argonne, Illinois

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Numerous types of actinide-bearing waste materials are found throughout the DOE complex. Most of these wastes consist of large volumes of non-hazardous materials contaminated with relatively small quantities of actinide elements. Separation of these wastes into their inert and radioactive components would dramatically reduce the costs of stabilization and disposal. For example, the DOE is responsible for decontaminating concrete within 7000 surplus contaminated buildings. The best technology now available for removing surface contamination from concrete involves removing the surface layer by grit blasting, which produces a large volume of blasting residue containing a small amount of radioactive material. Disposal of this residue is expensive because of its large volume and fine particulate nature. Considerable cost savings would result from separation of the radioactive constituents and stabilization of the concrete dust. Similarly, gas diffusion plants for uranium enrichment contain valuable high-purity nickel in the form of diffusion barriers. Decontamination is complicated by the extremely fine pores in these barriers, which are not readily accessible by most cleaning techniques. A cost-effective method for the removal of radioactive contaminants would release this valuable material for salvage. The objective of this project is to develop novel, substituted diphosphonic acid ligands that can be used for supercritical carbon dioxide extraction of actinide ions from solid wastes. Specifically, selected diphosphonic acids, which are known to form extremely stable complexes with actinides in aqueous and organic solution, are to be rendered carbon dioxide-soluble by the introduction of appropriate alkyl- or silicon-containing substituents. The metal complexation chemistry of these new ligands in SC-CO2 will then be investigated and techniques for their use in actinide extraction from porous solids developed.

Physical Description

vp.

Source

  • Other Information: PBD: 1 Jun 2001

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: EMSP-64965--2001
  • Grant Number: FG07-98ER14924
  • Grant Number: FG07-98ER14928
  • DOI: 10.2172/832969 | External Link
  • Office of Scientific & Technical Information Report Number: 832969
  • Archival Resource Key: ark:/67531/metadc779379

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 2001

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 21, 2016, 7:45 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Dietz, Mark L. Supercritical Carbon Dioxide-Soluble Ligands for Extracting Actinide Metal Ions from Porous Solids, report, June 1, 2001; Argonne, Illinois. (digital.library.unt.edu/ark:/67531/metadc779379/: accessed October 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.