Marcus 72501

Recent Radioisotope Developments at BNL

L.F. Mausner, K.L. Kolsky, S.C.Srivastava Medical Department, Brookhaven National Laboratory

> BROOKHAVEN NATIONAL LABORATORY

Brookhaven Science Associates U.S. Department of Energy

Radionuclide and Radiopharmaceutical Research (R&RR) Program at BNL

A Radionuclide R&D

- New/unique radionuclides
- Nuclear reactions, targetry
- Processing chemistry, generator development

A Radiopharmaceutical R&D

- Recombinant vehicles for targeting tumors with diagnostic/therapeutic isotopes with rigid bifunctional chelating agents
- Tin-117m chelates: bone pain and bone cancer therapy
- Radiolabeled stem cells for non invasive imaging
- Isotope Production and Distribution
 - Distribution of BLIP-produced isotopes
 - Process development research: improve quality and speed, minimize waste and/or personnel exposure.

Major Equipment and Facilities at BNL

Dedicated	Shared Use	Ancillary Support
-Brookhaven Linac Isotope Producer (BLIP)	-200 MeV Proton Linac	-Instrumentation, Machine
	-Chemistry Cyclotrons	
-Hot Laboratory Facilities		-Accelerator and Magnet
	-Center for Imaging and	Design; Engineering
-High Level Radiation Processing Cells	Neurosciences (SPECT, PET, and MRI)	Support
		-State-of-the-Art
-Radiochemistry Laboratories	-Laboratory Animal Facilities	Analytical Equipment and Services
	-Clinical Research Center	
-Analytical Instruments		-Computational Facilities
and Counting Equipment	-Patients from various area	
	institutions including SUNY, Stony Brook	-Waste Management

Brookhaven LINAC Isotope Producer (BLIP)

The high energy proton LINAC injects beam into Booster for further acceleration for high energy physics research and into BLIP for isotope production.

BLIP beam line directs protons to isotope production targets at beam intensity up to 115 A. Energy is variable stepwise ranging from 66 to 200 MeV. Beam is available from 10-22 weeks per year, dependent on physics funding.

Schematic of BLIP Beam Line

Target Processing Laboratory (TPL)

- All isotope production targets require some chemical processing
- Nine hot cells with steel clad lead walls (15.25cm thick) are used for remote handling and target processing

Radioisotopes Produced at BNL - I

Isotope	Half- life	Decay mode	Nuclear reaction	Typical application
⁷ Be ²⁸ Mg ²² Na ⁴⁷ Sc	53.3d 21h 2.6y 3.4d	EC &~- &~+ &~-	¹² C(p,spall) Cl(p,spall) Al(p,spall) ⁴⁸ Ti(p,2p)	Source Mg tracer Source Radioimmuno-
⁵² Fe	8.3h	િ≁ +(57%) ,EC	Ni(p,spall)	PET tracer, Fe metabolism
⁵⁵ Co ⁶⁴ Cu	17.5h 12.7 h	િ≁ +(81%) ,EC	⁵⁶ Fe(p,2n)	PET label; RIT PET label; RIT
⁶⁵ Zn	244d	EC	⁶⁹ Ge(p,≫n)	Zn tracer
⁶⁷ Cu	61.9h	Ger-	⁶⁸ Zn(p,2p)	RIT
⁶⁸ Ge/ ⁶⁸ Ga	271d/68m	EC	^{nat} Ga(p,2n/4n)	PET calibration
⁷³ As	80.3d	EC	⁷⁴ Ge(p,2n)	As tracer
⁸¹ Rb/ ^{81m} Kr	4.6h/13s	EC/IT	^{nat} Kr(p,4n)	Lung ventilatio

HFBR-produced

Radioisotopes Produced at BNL - II

Isotope	Half- life	Decay mode	Nuclear reaction	Typical application
⁸² Sr/ ⁸² Rb	25.4d/75s	EC/&/+	^{nat} Rb(p,4n/6n)	PET studies of heart
⁸⁸ Y	106.6d	EC	Mo(p,spall)	Y tracer
^{95m} Tc	61d	EC	¹⁰³ Rh(p,spall)	Tc tracer
⁹⁶ Tc	4.3d	EC	¹⁰³ Rh(p,3p5n)	Tc Tracer
⁹⁷ Ru	2.89d	EC	¹⁰³ Rh(p,2p5n)	SPECT label
¹⁰⁹ Cd	461.4d	EC	¹⁰⁹ Ag(p,n)	🕋 source
^{117m} Sn	13.6d	IT	¹¹⁷ Sn(n,n'☎)	Bone pain palliation
¹²² Xe/ ¹²² I	20.1h/3.6m	EC/ &_^+	¹³³ Cs(p,spall)	¹²² I generator
124	4.2 d	G. ^+		PET tracer
¹²⁷ Xe	36.4d	EC	¹³³ Cs(p,2p5n)	Lung/brain imaging
¹⁵³ Sm	1.9 d	&~ -	¹⁵² Sm(n, 2)	Bone pain palliation
^{195m} Pt	4.0 d	IT	192Os(≫,2n)	Rx Aug. emitter
²⁰³ Pb	51.9h	EC	²⁰⁹ Bi(p,2p5n)	RIT

HFBR-produced

Radioisotopes Distributed from BNL

Isotope	Half- life	Typical application
⁷ Be	53.3d	Gamma source
²² Na	2.61y	Long lived positron source
²⁸ Mg	21h	Mg tracer
⁷³ As	80.3d	As tracer
⁶⁵ Zn	244.1d	Zn tracer
⁶⁷ Cu	61.9h	Radioimmunotherapy
⁶⁸ Ge/ ⁶⁸ Ga	271d/68m	PET calibration
⁸² Sr/ ⁸² Rb	25.4d/75s	PET studies of heart
⁸⁸ Y	106.6d	Gamma calibration source
^{95m} Tc	61d	Tc tracer
⁹⁶ Tc	4.3d	Tc Tracer

Development of As-73

Half life = 80.3 day

- Emissions; gamma ray of 53.4 KeV (10.0%) and 9.86 KeV x-ray (90.5)
- Used as a longer lived substitute for the positron emitter ⁷²As (half life 26.0h) during radiopharmaceutical development or as a tracer in environmental studies of arsenic
- Produced by the ^{nat}Ge(p,xn)⁷³As nuclear reaction

Method-Irradiation

- A high purity Ge metal disk 0.508cm by 6.34cm diameter was irradiated at approximately 71 MeV at the BLIP facility
- The irradiation continued for 7 days followed by 11 days of decay and was restarted for another 4 days
- The total beam current was 13,306µAh
- The energy loss in the target was 17.7 MeV

⁷³As Recovery from Proton Irradiated Germanium Targets

Results

The irradiation produced 6.0GBg of ⁷³As and 7.5GBq of ⁷⁴As ($t_{1/2}$ =17.7d) at EOB. Other major isotopic impurities produced were Zn-65, Ge-68, Ge-69, Co-57, 58, 60 The overall chemical recovery was 61% Non As radioimpurities were reduced to <0.005% after processing No As carrier was measured at the 10ppb limit of detection. Theoretical ⁷³As specific activity is 825MBq/µg

Discussion

The nuclear irradiation was not optimized. In addition to to the interrupted bombardment, the incident proton energy of 71 MeV was well above the peak of the nuclear reaction cross section (~25 MeV). A lower energy slot was not available at the time. The coproduction of shorter lived ⁷⁴As (17.8d) actually improves the tracer utility of this material due to its higher energy gamma rays (595 KeV)

Discussion

The chemical process was also not optimum. The dissolution and distillation step took too long, approximately two weeks. The relatively low chemical recovery of As was due to losses during distillation. We believe this was caused by insufficient addition frequency of peroxide during the long distillation, leading to intermittently inadequate oxidizing conditions to maintain arsenic in the highest oxidation state. It is volatile in the lower +3 state.

Conclusions

 A lower beam energy will improve nuclear yield

- A target configuration with more surface area should speed up dissolution
- More careful control of the rate of H₂O₂ addition during distillation should increase chemical recovery

 Nevertheless, a useful quantity of carrier free ⁷³As was produced and this material has been made available to researchers

Development of Y-88

- Half life = 106.6day decay by electron capture
- Emissions = Eγ 898 KeV (94%), 1836 KeV (99.4%)
- Used as gamma ray detector calibration source and imageable substitute for ⁹⁰Y during radiopharmaceutical development
- Produced as a byproduct in Nb target capsule containing Ga metal for Ge-68 production
- Reaction is ⁹³Nb(p,α2n)⁸⁸Zr followed by EC
 decay to ⁸⁸Y

Irradiation

- Two Ga targets with 0.051cm thick by 6.98cm diameter Nb windows were irradiated in BLIP for approximately one month
- Proton energy incident on the windows was 63.6, 42.7, 31.4, and 0 MeV, with an energy loss of 2.8 MeV in each
- The integral beam current was 35,411μAh

⁸⁸Y Recovery from Proton Irradiation of Nb

Results

- ◆ 4.3 GBq of Zr-88 recovered, purified of all Y-88
- After 44d of decay, 8.9GBq of Y-88 grew in
- 8.2GBq of Y-88 recovered, 92% yield
- Radiopurity >99.999%
- Specific activity ~29Ci/mg (carrier free)
- Isotope will be available for distribution next week

Acknowledgements

- Thanks to D. Jamriska of LANL for assistance with As-73 and Y-88 developments
- Work supported by USDOE/Office of Nuclear Energy/Office of Isotope Programs under Contract#DE-AC02-98CH10886.