Colorimetric Method for Beryllium Surface Contamination Detection

PDF Version Also Available for Download.

Description

To address the need for real-time accurate total beryllium analyses, Savannah River Technology Center Analytical Development Section personnel evaluated and modified a colorimetric screening method developed at Los Alamos National Lab to measure beryllium on surfaces. This method was based on a color complex formed by beryllium and chromium azurol s . SRTC converted this visual method to a quantitative analysis method using spectrophotometric detection. The addition of a cationic surfactant (hexadecyltrimethylammonium bromide, CTAB) to the Be-CAS system shifted the complex absorbance away from the CAS absorbance and allowed for the detection. Assuming complete dissolution and a 10 mL rinse ... continued below

Physical Description

vp.

Creation Information

MCWHORTER, CHRISTOPHER March 11, 2004.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

To address the need for real-time accurate total beryllium analyses, Savannah River Technology Center Analytical Development Section personnel evaluated and modified a colorimetric screening method developed at Los Alamos National Lab to measure beryllium on surfaces. This method was based on a color complex formed by beryllium and chromium azurol s . SRTC converted this visual method to a quantitative analysis method using spectrophotometric detection. The addition of a cationic surfactant (hexadecyltrimethylammonium bromide, CTAB) to the Be-CAS system shifted the complex absorbance away from the CAS absorbance and allowed for the detection. Assuming complete dissolution and a 10 mL rinse solution volume to remove the beryllium from the wipe, the detection limit was calculated comfortably below the free release limit. The spectrophotometric method was rugged and simple enough that it could be used as a field method.

Physical Description

vp.

Source

  • Other Information: PBD: 11 Mar 2004

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: WSRC-TR-2003-00537
  • Grant Number: AC09-96SR18500
  • DOI: 10.2172/822083 | External Link
  • Office of Scientific & Technical Information Report Number: 822083
  • Archival Resource Key: ark:/67531/metadc779053

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • March 11, 2004

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • May 5, 2016, 5:38 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

MCWHORTER, CHRISTOPHER. Colorimetric Method for Beryllium Surface Contamination Detection, report, March 11, 2004; South Carolina. (digital.library.unt.edu/ark:/67531/metadc779053/: accessed August 16, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.