Environment Assessment, Resource Evaluation, and Underground Science in Southeastern California and Southwestern Nevada

PDF Version Also Available for Download.

Description

The geologically unique region of southeastern California and southwestern Nevada has both very high peaks and the lowest point, Death Valley, in the U.S. These features have significant effects on research in nuclear waste disposal, climate change, and evaluation of the potential for underground science in that region. These areas of scientific research can be further coordinated and expanded: (1) For nuclear waste, the studies of the Yucca Mountain site northeast of Death Valley contribute to the understanding of unsaturated and saturated flow and transport in an arid environment, with sensitivity to infiltration, under present-day and future climate conditions. (2) ... continued below

Physical Description

1 pages

Creation Information

Wang, J. May 12, 2004.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The geologically unique region of southeastern California and southwestern Nevada has both very high peaks and the lowest point, Death Valley, in the U.S. These features have significant effects on research in nuclear waste disposal, climate change, and evaluation of the potential for underground science in that region. These areas of scientific research can be further coordinated and expanded: (1) For nuclear waste, the studies of the Yucca Mountain site northeast of Death Valley contribute to the understanding of unsaturated and saturated flow and transport in an arid environment, with sensitivity to infiltration, under present-day and future climate conditions. (2) For climate research, water resources in hydrographic basins are being evaluated, in light of the prediction that there will be large decreases in snow accumulations (by 50%) in the 21st century. Further coupling of general circulation models with subsurface processes can increase understanding of hydrological responses to climate changes, with findings potentially applicable to other climate-stressed regions. (3) The combination of earth science testing and physics experimentation in underground laboratories signifies a promising research opportunity for the Death Valley region. Telescope Peak (along the western border of Death Valley), Boundary Peak (along the California-Nevada border), Mount Charleston (outside Las Vegas), and Mt. Tom (along the Pine Creek valley) are potential sites, with horizontal tunneling below peaks from valley floors to reach the depth required for low cosmic ray background. The use of existing mines in the region could also be explored for research in both earth science at different depths and the next generation of physics (e.g., neutrino mass measurements).

Physical Description

1 pages

Notes

INIS; OSTI as DE00837507

Source

  • Other Information: No journal information given for this preprint

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: NONE
  • Office of Scientific & Technical Information Report Number: 837507
  • Archival Resource Key: ark:/67531/metadc779005

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 12, 2004

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • Feb. 10, 2016, 6:06 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Enlarge

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Wang, J. Environment Assessment, Resource Evaluation, and Underground Science in Southeastern California and Southwestern Nevada, article, May 12, 2004; Las Vegas, Nevada. (digital.library.unt.edu/ark:/67531/metadc779005/: accessed August 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.