Fate and Transport of Radionuclides Beneath the Hanford Tank Farms: Unraveling Coupled Geochemical and Hydrological Processes in the Vadose Zone

PDF Version Also Available for Download.

Description

Although the accelerated transport of {sup 99}Tc, {sup 137}Cs, and {sup 235}U within the vadose zone beneath the 200-West Area of the Hanford tank-farm area has been recognized, the mechanisms responsible for the vertical migration of the radionuclides is unclear. Does horizontal stratification enhance the lateral movement of contaminants, which in turn enhances vertical preferential flow due to perched water dynamics? Do physical heterogeneities, such as stratification and pore regime connectivity, influence the retardation and degree of geochemical nonequilibrium during contaminant transport? Recent modeling efforts of the problem have failed to yield answers to this question since they are inadequately ... continued below

Physical Description

vp.

Creation Information

Jardine, Philip M.; Ainsworth, Calvin C. & Fendorf, Scott December 31, 2003.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Although the accelerated transport of {sup 99}Tc, {sup 137}Cs, and {sup 235}U within the vadose zone beneath the 200-West Area of the Hanford tank-farm area has been recognized, the mechanisms responsible for the vertical migration of the radionuclides is unclear. Does horizontal stratification enhance the lateral movement of contaminants, which in turn enhances vertical preferential flow due to perched water dynamics? Do physical heterogeneities, such as stratification and pore regime connectivity, influence the retardation and degree of geochemical nonequilibrium during contaminant transport? Recent modeling efforts of the problem have failed to yield answers to this question since they are inadequately parameterized due to the lack of sufficient quality data. Fundamental experimental research is needed that will improve the conceptual understanding and predictive capability of radionuclide migration in the Hanford tankfarm environment. Since geochemical reactions are directly linked to the system hydrodynamics, coupled geochemical and hydrological processes must be investigated in order to resolve the key mechanisms contributing to vadose zone and groundwater contamination at Hanford. Our research group has performed extensive investigations on time-dependent contaminant interactions with subsurface media using dynamic flow techniques which more closely simulate conditions in-situ. Of particular relevance to this proposal is the work of Barnett et al. (2000) who showed that U(VI) transport through Hanford sediments was highly retarded and extremely sensitive to changes in pH and total carbonate. What remains elusive are the geochemical mechanisms for uranium retention-necessary information for accurately simulating transport-and are thus the focus of this study. The experimental and numerical results from this research will provide knowledge and information in previously unexplored areas of vadose zone fate and transport to support EM's performance/risk assessment and decision-making process for Tank Farm restoration. By unraveling fundamental contaminant transport mechanisms in complex porous media, we provide an improved conceptual understanding and predictive capability of a variety of vadose issues within the DOE system.

Physical Description

vp.

Source

  • Other Information: PBD: 31 Dec 2003

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: EMSP-70219
  • Grant Number: FG07-99ER62889
  • DOI: 10.2172/833673 | External Link
  • Office of Scientific & Technical Information Report Number: 833673
  • Archival Resource Key: ark:/67531/metadc778893

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • December 31, 2003

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • Nov. 3, 2016, 7:38 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Jardine, Philip M.; Ainsworth, Calvin C. & Fendorf, Scott. Fate and Transport of Radionuclides Beneath the Hanford Tank Farms: Unraveling Coupled Geochemical and Hydrological Processes in the Vadose Zone, report, December 31, 2003; Oak Ridge, Tennessee. (digital.library.unt.edu/ark:/67531/metadc778893/: accessed November 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.