Inversion of multicomponent seismic data and rock-physics intepretation for evaluating lithology, fracture and fluid distribution in heterogeneous anisotropic reservoirs

PDF Version Also Available for Download.

Description

Within the framework of this collaborative project with the Lawrence Livermore National Laboratory (LLNL) and Stanford University, the Colorado School of Mines (CSM) group developed and implemented a new efficient approach to the inversion and processing of multicomponent, multiazimuth seismic data in anisotropic media. To avoid serious difficulties in the processing of mode-converted (PS) waves, we devised a methodology for transforming recorded PP- and PS-wavefields into the corresponding SS-wave reflection data that can be processed by velocity-analysis algorithms designed for pure (unconverted) modes. It should be emphasized that this procedure does not require knowledge of the velocity model and can ... continued below

Physical Description

17 pages

Creation Information

Tsvankin, Ilya & Larner, Kenneth L. November 17, 2004.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Within the framework of this collaborative project with the Lawrence Livermore National Laboratory (LLNL) and Stanford University, the Colorado School of Mines (CSM) group developed and implemented a new efficient approach to the inversion and processing of multicomponent, multiazimuth seismic data in anisotropic media. To avoid serious difficulties in the processing of mode-converted (PS) waves, we devised a methodology for transforming recorded PP- and PS-wavefields into the corresponding SS-wave reflection data that can be processed by velocity-analysis algorithms designed for pure (unconverted) modes. It should be emphasized that this procedure does not require knowledge of the velocity model and can be applied to data from arbitrarily anisotropic, heterogeneous media. The azimuthally varying reflection moveouts of the PP-waves and constructed SS-waves are then combined in anisotropic stacking-velocity tomography to estimate the velocity field in the depth domain. As illustrated by the case studies discussed in the report, migration of the multicomponent data with the obtained anisotropic velocity model yields a crisp image of the reservoir that is vastly superior to that produced by conventional methods. The scope of this research essentially amounts to building the foundation of 3D multicomponent, anisotropic seismology. We have also worked with the LLNL and Stanford groups on relating the anisotropic parameters obtained from seismic data to stress, lithology, and fluid distribution using a generalized theoretical treatment of fractured, poroelastic rocks.

Physical Description

17 pages

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: NONE
  • Grant Number: FG02-98ER14908
  • DOI: 10.2172/834389 | External Link
  • Office of Scientific & Technical Information Report Number: 834389
  • Archival Resource Key: ark:/67531/metadc778883

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • November 17, 2004

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • Aug. 3, 2016, 4:03 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 7

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Tsvankin, Ilya & Larner, Kenneth L. Inversion of multicomponent seismic data and rock-physics intepretation for evaluating lithology, fracture and fluid distribution in heterogeneous anisotropic reservoirs, report, November 17, 2004; United States. (digital.library.unt.edu/ark:/67531/metadc778883/: accessed December 10, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.