Imaging of the Self-Excited Oscillation of Flow Past a Cavity During Generation of a Flow Tone

PDF Version Also Available for Download.

Description

Flow through a pipeline-cavity system can give rise to pronounced flow tones, even when the inflow boundary layer is fully turbulent. Such tones arise from the coupling between the inherent instability of the shear flow past the cavity and a resonant acoustic mode of the system. A technique of high-image-density particle image velocimetry is employed in conjunction with a special test section, which allows effective laser illumination and digital acquisition of patterns of particle images. This approach leads to patterns of velocity, vorticity, streamline topology and hydrodynamic contributions to the acoustic power integral. Comparison of global, instantaneous images with time- ... continued below

Physical Description

18648 Kilobytes pages

Creation Information

Geveci, M.; Oshkai, P.; Rockwell, D.; Lin, J-C. & Pollack, M. May 21, 2002.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 14 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

  • Lockheed Martin
    Publisher Info: Lockheed Martin Corporation, Schenectady, NY 12301 (United States)
    Place of Publication: Schenectady, New York

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Flow through a pipeline-cavity system can give rise to pronounced flow tones, even when the inflow boundary layer is fully turbulent. Such tones arise from the coupling between the inherent instability of the shear flow past the cavity and a resonant acoustic mode of the system. A technique of high-image-density particle image velocimetry is employed in conjunction with a special test section, which allows effective laser illumination and digital acquisition of patterns of particle images. This approach leads to patterns of velocity, vorticity, streamline topology and hydrodynamic contributions to the acoustic power integral. Comparison of global, instantaneous images with time- and phase-averaged representations provides insight into the small-scale and large-scale concentrations of vorticity, and their consequences on the topological features of Streamline patterns, as well as the streamwise and transverse projections of the hydrodynamic contribution to the acoustic power integral. Furthermore, these global approaches allow the definition of effective wavelengths and phase speeds of the vortical structures, which can lead to guidance for physical models of the dimensionless frequency of oscillation.

Physical Description

18648 Kilobytes pages

Notes

OSTI as DE00821957

Source

  • Other Information: PBD: 21 May 2002

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: LM-02K040
  • Grant Number: AC12-00SN39357
  • DOI: 10.2172/821957 | External Link
  • Office of Scientific & Technical Information Report Number: 821957
  • Archival Resource Key: ark:/67531/metadc778815

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • May 21, 2002

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 28, 2016, 8:51 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 3
Total Uses: 14

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Geveci, M.; Oshkai, P.; Rockwell, D.; Lin, J-C. & Pollack, M. Imaging of the Self-Excited Oscillation of Flow Past a Cavity During Generation of a Flow Tone, report, May 21, 2002; Schenectady, New York. (digital.library.unt.edu/ark:/67531/metadc778815/: accessed October 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.