Development of Radon as a Natural Tracer for Monitoring the Remediation of NAPL Contamination in the Subsurface

PDF Version Also Available for Download.

Description

Dense non-aqueous phase liquids (DNAPLs) such as trichloroethene (TCE) and perchloroethene (PCE) present long-term challenges in terms of quantification in the subsurface at many DOE facilities. Over the past year we have continued investigating a potentially lower cost method for quantifying DNAPLs in the subsurface using naturally occurring, in situ dissolved radon as a partitioning tracer. Radon can be used as a partitioning tracer in both static (i.e., no flow) and dynamic methodologies (Semprini et al., 1993; Semprini et al., 1998; Semprini et al., 2000). The static radon method involves obtaining radon samples from DNAPL-contaminated and non-contaminated portions of the ... continued below

Physical Description

vp.

Creation Information

Davis, Brian M. & Semprini, Lewis and Istok, Jonathan June 1, 2002.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Dense non-aqueous phase liquids (DNAPLs) such as trichloroethene (TCE) and perchloroethene (PCE) present long-term challenges in terms of quantification in the subsurface at many DOE facilities. Over the past year we have continued investigating a potentially lower cost method for quantifying DNAPLs in the subsurface using naturally occurring, in situ dissolved radon as a partitioning tracer. Radon can be used as a partitioning tracer in both static (i.e., no flow) and dynamic methodologies (Semprini et al., 1993; Semprini et al., 1998; Semprini et al., 2000). The static radon method involves obtaining radon samples from DNAPL-contaminated and non-contaminated portions of the aquifer and using the change in radon concentrations to locate and quantify DNAPL saturation in the aquifer. The dynamic radon method incorporates single-well injection withdrawal (i.e., push-pull) tests to estimate radon retardation and DNAPL saturation. These methods have the potential to provide a robust method for DNAPL saturation quantification while decreasing the costs associated with these activities.

Physical Description

vp.

Source

  • Other Information: PBD: 1 Jun 2002

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: EMSP-60158--2002
  • Grant Number: FG07-97ER62523
  • DOI: 10.2172/828610 | External Link
  • Office of Scientific & Technical Information Report Number: 828610
  • Archival Resource Key: ark:/67531/metadc778810

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 2002

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 21, 2016, 1:15 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Davis, Brian M. & Semprini, Lewis and Istok, Jonathan. Development of Radon as a Natural Tracer for Monitoring the Remediation of NAPL Contamination in the Subsurface, report, June 1, 2002; United States. (digital.library.unt.edu/ark:/67531/metadc778810/: accessed October 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.