Development and Behavior of Metallic Filter Element and Numerical Simulation of Transport Phenomena during Filter Regeneration Process

PDF Version Also Available for Download.

Description

Ceramic filters have revealed to have good thermal resistance and chemical corrosion resistance, but they are brittle and lack of toughness, and liable to rupture under large temperature swings. Metallic filters with their high strength and toughness and good heat conduction ability have showed good thermal shock resistance, 310S and FeAl intermetallic filter elements have exhibited additionally good chemical corrosion resistance in oxidizing and sulfidizing atmosphere( Sawada 1999 and Sunil et al. 1999). The behavior of metallic filter elements at high temperature was investigated and the filtration efficiency of the filter units for hot gas from a coal gasifier unit ... continued below

Physical Description

vp.

Creation Information

Kuang, C.; Zhang, J.; Wang, F. & Chen, J. September 19, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Ceramic filters have revealed to have good thermal resistance and chemical corrosion resistance, but they are brittle and lack of toughness, and liable to rupture under large temperature swings. Metallic filters with their high strength and toughness and good heat conduction ability have showed good thermal shock resistance, 310S and FeAl intermetallic filter elements have exhibited additionally good chemical corrosion resistance in oxidizing and sulfidizing atmosphere( Sawada 1999 and Sunil et al. 1999). The behavior of metallic filter elements at high temperature was investigated and the filtration efficiency of the filter units for hot gas from a coal gasifier unit was tested. Pulse-jet cleaning of filter elements is a key component in the operation of the filtration unit. The pulse-jet is introduced into the filter element cavities from the clean side, and the dust cakes on the outer surfaces of the filter elements are detached and fall into the filter vessel. Sequential on-line cleaning of filter element groups yields a filter operation with no shutdown for filter regeneration. Development of advanced technologies in the design and operation of the pulse cleaning is one of the important tasks in order to increase the system reliability, to improve the filter life and to increase the filtering performance. The regeneration of filter element in gas filtration at high temperature plays a very important role for the operation of the process. Based on experimental observation and field operation, a numerical model is set up to numerically simulate the momentum and heat transport phenomena in the regeneration process, which is essential for understanding of the process, the optimization of process parameters and improvement of the design of the structure of venturi nozzle and the configuration of the apparatus.

Physical Description

vp.

Notes

OSTI as DE00835854

Source

  • 5th International Symposium on Gas Cleaning at High Temperatures, Morgantown, WV (US), 09/17/2002--09/20/2002

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: none
  • Office of Scientific & Technical Information Report Number: 835854
  • Archival Resource Key: ark:/67531/metadc778783

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 19, 2002

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • Jan. 22, 2016, 5:23 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 8

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Kuang, C.; Zhang, J.; Wang, F. & Chen, J. Development and Behavior of Metallic Filter Element and Numerical Simulation of Transport Phenomena during Filter Regeneration Process, article, September 19, 2002; United States. (digital.library.unt.edu/ark:/67531/metadc778783/: accessed August 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.