Holographic theories of electroweak symmetry breaking without aHiggs Boson

PDF Version Also Available for Download.

Description

Recently, realistic theories of electroweak symmetry breaking have been constructed in which the electroweak symmetry is broken by boundary conditions imposed at a boundary of higher dimensional spacetime. These theories have equivalent 4D dual descriptions, in which the electroweak symmetry is dynamically broken by non-trivial infrared dynamics of some gauge interaction, whose gauge coupling {tilde g} and size N satisfy {tilde g}{sup 2}N {approx}> 16{pi}{sup 2}. Such theories allow one to calculate electroweak radiative corrections, including the oblique parameters S, T and U, as long as {tilde g}{sup 2}N/16{pi}{sup 2} and N are sufficiently larger than unity. We study how ... continued below

Creation Information

Burdman, Gustavo & Nomura, Yasunori December 30, 2003.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Recently, realistic theories of electroweak symmetry breaking have been constructed in which the electroweak symmetry is broken by boundary conditions imposed at a boundary of higher dimensional spacetime. These theories have equivalent 4D dual descriptions, in which the electroweak symmetry is dynamically broken by non-trivial infrared dynamics of some gauge interaction, whose gauge coupling {tilde g} and size N satisfy {tilde g}{sup 2}N {approx}> 16{pi}{sup 2}. Such theories allow one to calculate electroweak radiative corrections, including the oblique parameters S, T and U, as long as {tilde g}{sup 2}N/16{pi}{sup 2} and N are sufficiently larger than unity. We study how the duality between the 4D and 5D theories manifests itself in the computation of various physical quantities. In particular, we calculate the electroweak oblique parameters in a warped 5D theory where the electroweak symmetry is broken by boundary conditions at the infrared brane. We show that the value of S obtained in the minimal theory exceeds the experimental bound if the theory is in a weakly coupled regime. This requires either an extension of the minimal model or departure from weak coupling. A particularly interesting scenario is obtained if the gauge couplings in the 5D theory take the largest possible values--the value suggested by naive dimensional analysis. We argue that such a theory can provide a potentially consistent picture for dynamical electroweak symmetry breaking: corrections to the electroweak observables are sufficiently small while realistic fermion masses are obtained without conflicting with bounds from flavor violation. The theory contains only the standard model quarks, leptons and gauge bosons below {approx_equal}2 TeV, except for a possible light scalar associated with the radius of the extra dimension. At {approx_equal}2 TeV increasingly broad string resonances appear. An analysis of top-quark phenomenology and flavor violation is also presented, which is applicable to both the weakly-coupled and strongly-coupled cases.

Source

  • Journal Name: Physical Review D; Journal Volume: 69; Related Information: Journal Publication Date: 2004

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--54212
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 860460
  • Archival Resource Key: ark:/67531/metadc778732

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 30, 2003

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 1, 2016, 8:04 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Burdman, Gustavo & Nomura, Yasunori. Holographic theories of electroweak symmetry breaking without aHiggs Boson, article, December 30, 2003; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc778732/: accessed November 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.