Characterization of a New Family of Metal Transport Proteins

PDF Version Also Available for Download.

Description

Soils at many DOE sites are contaminated with metals and radionuclides. Such soils obviously pose a risk to human and animal health. Unlike organic wastes, which can be metabolized, metals are immutable and cannot be degraded into harmless constituents. Phytoremediation, the use of plants to remove toxic materials from soil and water, may prove to be an environmentally friendly and cost effective solution for cleaning up metal contaminated sites. The success of phytoremediation will rely on the availability of plants that absorb, translocate, and tolerate the contaminating metals. However, before we can engineer such plants, we need more basic information ... continued below

Physical Description

vp.

Creation Information

Guerinot, Mary Lou & Eide, David June 1, 1999.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Soils at many DOE sites are contaminated with metals and radionuclides. Such soils obviously pose a risk to human and animal health. Unlike organic wastes, which can be metabolized, metals are immutable and cannot be degraded into harmless constituents. Phytoremediation, the use of plants to remove toxic materials from soil and water, may prove to be an environmentally friendly and cost effective solution for cleaning up metal contaminated sites. The success of phytoremediation will rely on the availability of plants that absorb, translocate, and tolerate the contaminating metals. However, before we can engineer such plants, we need more basic information on how plants acquire metals. An important long term goal of our research program is to understand how metals such as zinc, cadmium and iron are transported across membranes. Our research is focused on a new family of metal transporters, which we have identified through combined studies in the yeast Saccharomyces cerevisiae and in the model plant Arabidopsis thaliana. We have identified a family of 24 presumptive metal transport genes in a variety of organisms including yeast, trypanosomes, plants, nematodes, and humans. This family, which we have designated the ''ZIP'' genes, provides a rich source of material with which to undertake studies on metal transport in eukar

Physical Description

vp.

Source

  • Other Information: PBD: 1 Jun 1999

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: EMSP-60271--1999
  • Grant Number: FG07-97ER20292
  • DOI: 10.2172/829905 | External Link
  • Office of Scientific & Technical Information Report Number: 829905
  • Archival Resource Key: ark:/67531/metadc778704

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 1999

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 21, 2016, 4:47 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Guerinot, Mary Lou & Eide, David. Characterization of a New Family of Metal Transport Proteins, report, June 1, 1999; United States. (digital.library.unt.edu/ark:/67531/metadc778704/: accessed August 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.