CO2 splitting by H2O to CO and O2 under UV light in TiMCM-41silicate sieve

PDF Version Also Available for Download.

Description

The 266 nm light-induced reaction of CO{sub 2} and H{sub 2}O gas mixtures (including isotopic modifications {sup 13}CO{sub 2}, C{sup 18}O{sub 2}, and D{sub 2}O) in framework TiMCM-41 silicate sieve was monitored by in-situ FT-IR spectroscopy at room temperature. Carbon monoxide gas was observed as the sole product by infrared, and the growth was found to depend linearly on the photolysis laser power. H{sub 2}O was confirmed as stoichiometric electron donor. The work establishes CO as the single photon, 2-electron transfer product of CO{sub 2} photoreduction by H{sub 2}O at framework Ti centers for the first time. O{sub 2} was ... continued below

Creation Information

Lin, Wenyong; Han, Hongxian & Frei, Heinz April 6, 2004.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The 266 nm light-induced reaction of CO{sub 2} and H{sub 2}O gas mixtures (including isotopic modifications {sup 13}CO{sub 2}, C{sup 18}O{sub 2}, and D{sub 2}O) in framework TiMCM-41 silicate sieve was monitored by in-situ FT-IR spectroscopy at room temperature. Carbon monoxide gas was observed as the sole product by infrared, and the growth was found to depend linearly on the photolysis laser power. H{sub 2}O was confirmed as stoichiometric electron donor. The work establishes CO as the single photon, 2-electron transfer product of CO{sub 2} photoreduction by H{sub 2}O at framework Ti centers for the first time. O{sub 2} was detected as co-product by mass spectrometric analysis of the photolysis gas mixture. These results are explained by single UV photon-induced splitting of CO{sub 2} by H{sub 2}O to CO and surface OH radical.

Source

  • Journal Name: Journal of Physical Chemistry; Journal Volume: 108; Journal Issue: 47

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--54861
  • Grant Number: DE-AC02-05CH11231
  • DOI: 10.1021/jp040345u | External Link
  • Office of Scientific & Technical Information Report Number: 861229
  • Archival Resource Key: ark:/67531/metadc778701

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 6, 2004

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 1, 2016, 7:18 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 7

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Lin, Wenyong; Han, Hongxian & Frei, Heinz. CO2 splitting by H2O to CO and O2 under UV light in TiMCM-41silicate sieve, article, April 6, 2004; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc778701/: accessed August 16, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.