Advanced Modeling and Experimental Validation of Complex Nuclear Material Forms of Potential Transportation Concern

PDF Version Also Available for Download.

Description

We present here computer modeling efforts to describe the time-dependent pressurization and gas-phase mole fractions inside sealed canisters containing actinide materials packaged with small (0.12 - 0.5 wt. %) amounts of water. The model is run using Chemkin software, and the chemical reaction mechanism includes gas generation due to radiolysis of adsorbed water, interfacial chemical reactions, and adsorption/desorption kinetics of water on PuO2 materials. The ultimate goal is to provide a verifiable computer model that can be used to predict problematic gas generation in storage forms and assure design criteria for short-term storage and transportation of less than well-characterized (with ... continued below

Physical Description

11 pages

Creation Information

Kelly, D. & Paffett, M. T. February 25, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We present here computer modeling efforts to describe the time-dependent pressurization and gas-phase mole fractions inside sealed canisters containing actinide materials packaged with small (0.12 - 0.5 wt. %) amounts of water. The model is run using Chemkin software, and the chemical reaction mechanism includes gas generation due to radiolysis of adsorbed water, interfacial chemical reactions, and adsorption/desorption kinetics of water on PuO2 materials. The ultimate goal is to provide a verifiable computer model that can be used to predict problematic gas generation in storage forms and assure design criteria for short-term storage and transportation of less than well-characterized (with respect to gas generation) material classes. Our initial efforts are intended to assess pressurization and gas-phase mole fractions using well-defined 3013 container test cases. We have modeled gas generation on PuO2 with water loading up to 0.5 wt. %, at 300 and 525 K, for time frames of 3 years. Estimates of the initial H2 generation rates were determined using RadCalc and employed in the Chemkin model to assess time- and coverage-dependent system behavior. Results indicate that canister pressurization due to radiolysis is a relatively slow process, with pressure increases at 300 K of approximately 1.5 atm. for 5000 g of PuO2 packaged with 0.5 wt. % water. At higher temperatures (> 400 K), desorption of water into the gas phase largely dictates pressurization and the gas-phase mole fractions. These modeling efforts provide a predictive capability for potential gas generation behavior that when augmented and validated by surveillance information will provide a technical basis for safe storage and transportation.

Physical Description

11 pages

Source

  • Waste Management 2002 Symposium, Tucson, AZ (US), 02/24/2002--02/28/2002

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: NONE
  • Grant Number: none
  • Office of Scientific & Technical Information Report Number: 832821
  • Archival Resource Key: ark:/67531/metadc778231

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 25, 2002

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 27, 2016, 1:19 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Kelly, D. & Paffett, M. T. Advanced Modeling and Experimental Validation of Complex Nuclear Material Forms of Potential Transportation Concern, article, February 25, 2002; Tucson, Arizona. (digital.library.unt.edu/ark:/67531/metadc778231/: accessed August 16, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.