Selective catalysis utilizing bifunctionalized MCM-41 mesoporous materials

PDF Version Also Available for Download.

Description

Selective catalysis is a field that has been under intense investigation for the last 100 years. The most widely used method involves catalysts with stereochemical selectivity. In this type of catalysis, the catalyst controls which reactants will be transformed into the desired product. The secret to employing this type of catalysis, though, is to design the proper catalyst, which can be difficult. One may spend as much time developing the catalyst as spent separating the various products achieved. Another method of selective catalysis is now being explored. The method involves utilizing a multifunctional mesoporous silica catalyst with a gate-keeping capability. ... continued below

Physical Description

1272 Kb

Creation Information

Strosahl, Kasey Jean May 1, 2005.

Context

This thesis or dissertation is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this document can be viewed below.

Who

People and organizations associated with either the creation of this thesis or dissertation or its content.

Sponsor

Publisher

  • Ames Laboratory
    Publisher Info: AMES (Ames Laboratory (AMES), Ames, IA)
    Place of Publication: Ames, Iowa

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this thesis or dissertation. Follow the links below to find similar items on the Digital Library.

Description

Selective catalysis is a field that has been under intense investigation for the last 100 years. The most widely used method involves catalysts with stereochemical selectivity. In this type of catalysis, the catalyst controls which reactants will be transformed into the desired product. The secret to employing this type of catalysis, though, is to design the proper catalyst, which can be difficult. One may spend as much time developing the catalyst as spent separating the various products achieved. Another method of selective catalysis is now being explored. The method involves utilizing a multifunctional mesoporous silica catalyst with a gate-keeping capability. Properly functionalized mesoporous materials with well-defined pore morphology and surface properties can provide an ideal three-dimensional environment for anchoring various homogeneous catalysts. These materials can circumvent the multi-sited two-dimensional nature most heterogeneous systems have without adversely impacting the reactant diffusivity. These single-site nanostructured catalysts with ordered geometrical structure are advantageous in achieving high selectivity and reactivity. Mesoporous materials can be prepared to include pores lined homogeneously with tethered catalysts via co-condensation. Additionally, these materials can be reacted with another (RO){sub 3}Si{approx}Z group by using the traditional grafting method; this group is anchored predominantly at the entrances to the pores rather than inside the pores. Thus, if these {approx}Z groups are chosen properly, they can select certain molecules to enter the pores and be converted to products (Scheme 1). In such multifunctional catalysts, the selectivity depends on the discrimination of the gatekeeper. Gate-keeping MCM-41 materials are at the forefront of catalytic substances.

Physical Description

1272 Kb

Language

Identifier

Unique identifying numbers for this document in the Digital Library or other systems.

  • Report No.: IS-T 2616
  • Grant Number: W-7405-ENG-82
  • Office of Scientific & Technical Information Report Number: 850044
  • Archival Resource Key: ark:/67531/metadc777555

Collections

This document is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this thesis or dissertation?

When

Dates and time periods associated with this thesis or dissertation.

Creation Date

  • May 1, 2005

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • Nov. 3, 2016, 11:37 a.m.

Usage Statistics

When was this document last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 5

Interact With This Thesis Or Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Strosahl, Kasey Jean. Selective catalysis utilizing bifunctionalized MCM-41 mesoporous materials, thesis or dissertation, May 1, 2005; Ames, Iowa. (digital.library.unt.edu/ark:/67531/metadc777555/: accessed September 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.