U.S. Department of Energy
Experimental Program to Simulate Competitive Research

Grant DE-FG02-98ER45715
Experimental Benchmarking of Fire Modeling Simulations

Final Report

Principal Investigator
Miles Greiner
Professor of Mechanical Engineering
University of Nevada
Reno, NV 89557
(775) 784-4873
greiner@unr.edu

Lab Collaborator
Carlos Lopez
Senior Member of Technical Staff
Sandia National Laboratories
P.O Box 5800, MS 0718
Albuquerque, NM 87185
(505) 845-9545, fax: (505) 844-0244
carlope@sandia.gov

Total DOE Funding: $149,784
Award Duration: 9/98 – 9/02

DOE Patent Clearance Granted
Mark P. Dvorscak
(630) 252-2393
E-mail: mark.dvorscak@ch.doe.gov
Office of Intellectual Property Law
DOE Chicago Operations Office
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
Summary

A series of large-scale fire tests were performed at Sandia National Laboratories to simulate a nuclear waste transport package under severe accident conditions (Figure 1). The test data were used to adjust the Container Analysis Fire Environment (CAFE) computer code (Figure 2). CAFE is a computational fluid dynamics fire model that accurately calculates the heat transfer from a large fire to a massive engulfed transport package. CAFE will be used in transport package design studies and risk analyses.

To date, this project has received $142,708 of co-funding and continuation funding from four different agencies. This support is roughly equal to the $149,784 received from EPSCoR. This funding supported 6 master’s degree candidates and four undergraduate students. This work has been reported in eight refereed publications (two in archival journals and six in reviewed conference proceedings) and five invited lectures. Summaries of the co-funding, student support, and publications are given below.

Co-Funding and Continuation Funding

State of Nevada, Agency for Nuclear Projects, “HLW Highway Transportation Safety Issues: Shipping Cask Performance in Severe Accident Fire Environments,” #00/01.0006, 5/00 to 6/00, PI: M. Greiner, $52,000.

Sandia National Laboratories, “Package Performance Study Peer Review Panel,” 1/02 to 12/02, PI: M. Greiner, $5,288.

Students Supported
Masters Degree Candidates
 M. Alex Kramer (completed 12/01)
 H. Ju (completed 8/01)
 N. Are (anticipated completion 5/03)
 S. Umapallli
 V. Govindaraju
 H.S. Sunkara

Bachelor Degree Students
 M. A. Kramer (completed 5/99)
 K. Davis (anticipated completion 5/02)
 K. Parker (anticipated completion 5/02)
 A. Broch (anticipated completion 5/02)

Publications
Refereed Journals

Refereed Conferences

Invited Lectures (Not associated with refereed conference publications)

Figure 2. Three-Dimensional Computational Fluid Dynamics simulations of a fire engulfing a massive object with wind performed using CAFE. CAFE will be used in nuclear waste transport design and risk studies.