A New Framework for Adaptive Sampling and Analysis During Long-Term Monitoring and Remedial Action Management

PDF Version Also Available for Download.

Description

The Argonne team has gathered available data on monitoring wells and measured hydraulic heads from the Argonne 317/319 site and sent it to UIUC. Xiaodong Li, a research assistant supported by the project, has reviewed the data and has fit initial spatiotemporal statistical models to it. Another research assistant, Yonas Demissie, has completed generation of the artificial data that will be used for model development and testing. In order to generate the artificial data a detailed groundwater flow and contaminant transport model was developed based upon characteristics of the 317/319 site. The model covers a multi-year time horizon that includes ... continued below

Creation Information

Minsker, Barbara December 1, 2004.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The Argonne team has gathered available data on monitoring wells and measured hydraulic heads from the Argonne 317/319 site and sent it to UIUC. Xiaodong Li, a research assistant supported by the project, has reviewed the data and has fit initial spatiotemporal statistical models to it. Another research assistant, Yonas Demissie, has completed generation of the artificial data that will be used for model development and testing. In order to generate the artificial data a detailed groundwater flow and contaminant transport model was developed based upon characteristics of the 317/319 site. The model covers a multi-year time horizon that includes both before and after planting of the trees. As described in the proposal, the artificial data is created by adding ''measurement'' error to the ''true'' value from the numerical model. To date, only simple white noise error models have been considered. He is now reviewing the literature and beginning to develop a hierarchical modeling approach for the artificial data. Abhishek Singh, a third research assistant supported by the project, is implementing learning models for learning users preferences in an interactive genetic algorithm for solving the inverse problem. Meghna Babbar, the fourth research assistant supported by the project, has been improving the user interface for the interactive genetic algorithm and preparing a long-term monitoring design problem for testing the approach. Gayathri Gopalakrishnan, the last research assistant who is partially supported by the project, has collected substantial data from the 317/319 phytoremediation site at Argonne and has begun learning approaches for modeling these data.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: EMSP-87023--2004
  • Grant Number: FG07-02ER63502
  • DOI: 10.2172/850387 | External Link
  • Office of Scientific & Technical Information Report Number: 850387
  • Archival Resource Key: ark:/67531/metadc777161

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • December 1, 2004

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • Feb. 1, 2018, 10:38 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Enlarge

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Minsker, Barbara. A New Framework for Adaptive Sampling and Analysis During Long-Term Monitoring and Remedial Action Management, report, December 1, 2004; Illinois. (digital.library.unt.edu/ark:/67531/metadc777161/: accessed October 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.