Radiation Effects on Materials in the Near-Field of a Nuclear Waste Repository

PDF Version Also Available for Download.

Description

Site restoration activities at US DOE facilities and the permanent disposal of nuclear waste generated at DOE facilities require working with and within various types and levels of radiation fields. Once the nuclear waste is incorporated into a final form, radioactive decay will decrease the radiation field over geologic time scales, but the alpha-decay dose for these solids will still reach values as high as 1018 alpha-decay events/gm in periods as short as 1,000 years. This dose is well within the range for which important chemical (e.g., increased leach rate) and physical (e.g., volume expansion) changes may occur in crystalline ... continued below

Physical Description

vp.

Creation Information

Wang, Lu-Min & Ewing, Rodney C. June 1, 2000.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Site restoration activities at US DOE facilities and the permanent disposal of nuclear waste generated at DOE facilities require working with and within various types and levels of radiation fields. Once the nuclear waste is incorporated into a final form, radioactive decay will decrease the radiation field over geologic time scales, but the alpha-decay dose for these solids will still reach values as high as 1018 alpha-decay events/gm in periods as short as 1,000 years. This dose is well within the range for which important chemical (e.g., increased leach rate) and physical (e.g., volume expansion) changes may occur in crystalline ceramics. Release and sorption of long-lived actinides can also provide a radiation exposure to backfill materials, and changes in important retardation properties (e.g., cation exchange capacity) may occur. The objective of this research program has been to evaluate the long-term radiation effects in materials used in processing high-level nuclear waste or materials in the near-field of a nuclear waste repository.

Physical Description

vp.

Source

  • Other Information: PBD: 1 Jun 2000

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: EMSP-54691--2000
  • Grant Number: FG07-97ER45652
  • DOI: 10.2172/827068 | External Link
  • Office of Scientific & Technical Information Report Number: 827068
  • Archival Resource Key: ark:/67531/metadc777083

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 2000

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 21, 2016, 3:51 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Wang, Lu-Min & Ewing, Rodney C. Radiation Effects on Materials in the Near-Field of a Nuclear Waste Repository, report, June 1, 2000; United States. (digital.library.unt.edu/ark:/67531/metadc777083/: accessed August 16, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.