Determination of Transmutation Effects in Crystalline Waste Forms

PDF Version Also Available for Download.

Description

The overall goal of this Environmental Management Science Program project was to develop research tools to investigate the effect of transmutation, that is, the radioactive decay of a radioisotope to an isotope of another element, on the stability of a crystalline matrix. This process is an important issue in the assessment of the long-term stability, and hence performance, of a waste form. Most work on radiation effects in waste forms has focused on alpha radiation, which produces more displacements than beta radiation. However, beta radiation results in transmutation, which changes both the valence and the ionic radius of the element ... continued below

Physical Description

vp.

Creation Information

Fortner, Jeffrey A. December 31, 1999.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

  • Argonne National Laboratory
    Publisher Info: Argonne National Lab., Argonne, IL (United States)
    Place of Publication: Argonne, Illinois

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The overall goal of this Environmental Management Science Program project was to develop research tools to investigate the effect of transmutation, that is, the radioactive decay of a radioisotope to an isotope of another element, on the stability of a crystalline matrix. This process is an important issue in the assessment of the long-term stability, and hence performance, of a waste form. Most work on radiation effects in waste forms has focused on alpha radiation, which produces more displacements than beta radiation. However, beta radiation results in transmutation, which changes both the valence and the ionic radius of the element undergoing decay. These changes in coordination chemistry may destabilize the waste form and hence permit higher releases of the radionuclide contaminants to the accessible environment. Little is known about the mobility of Cs in pollucite. Only a few studies [1-3] have examined leaching following transmutation or irradiation of pollucite or closely related aluminosilicates. These studies seem to have contradictory results. The results may indicate that prior to radiation-induced amorphization, the accumulated defects may lead to higher leachability of Cs [3], whereas once amorphization occurs, the Cs becomes trapped in the collapsed structure [2]. A more thorough analysis of the effect of accumulated defects from both transmutation and ionization processes on the pollucite structure is needed to assess to the impact on Cs mobility. In this three- year research program, we used cutting-edge experimental approaches to investigate this little-understood issue. The work was a collaboration between Argonne National Laboratory (ANL) and Pacific Northwest National Laboratory (PNNL). We focused on the effects of transmutation on pollucite (CsAlSi2O6), a cesium aluminosilicate that has been proposed for the long-term immobilization of radioactive cesium. In this ceramic waste form, the 137Cs decays to 137Ba, causing barium to build up in the pollucite samples over time. We selected pollucite for this study for the following reasons: We had access to several well-characterized samples of 137Cs containing pollucite that had been stored under ambient conditions for up to 20 years. Cesium has a high activity (t1/2 = 30.13 years), leading to the buildup of significant levels of Ba in these samples. Cesium continues to be an important constituent of the waste management effort within the DOE complex.

Physical Description

vp.

Source

  • Other Information: PBD: 31 Dec 1999

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • December 31, 1999

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 21, 2016, 6:21 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Fortner, Jeffrey A. Determination of Transmutation Effects in Crystalline Waste Forms, report, December 31, 1999; Argonne, Illinois. (digital.library.unt.edu/ark:/67531/metadc777063/: accessed November 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.