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ABSTRACT 

Based on the reproducing kernel particle method an enrichment 
procedure is introduced to enhance the effectiveness of the finite 
element method. The basic concepts for the reproducing kernel 
particle method are briefly reviewed. By adopting the well- 
known completeness requirements, a generalized form of the 
reproducing kernel particle method is developed. Through a 
combination of these two methods their unique advantages can 
be utilized. An alternative approach, the multiple field method is 
also introduced. -- i s  

INTRODUCTION 

The finite element method has been the most widely used 
technique in the computational mechanics in the past two 
decades. However, recently the particle methods have been 
enjoying an increasing interest. Several different particle 
methods with unique advantages and disadvantages have been 
proposed, including smooth particle hydrodynamics (SPH) 
(Gmgold and Monaghan, (1977), Lucy (1977), diffuse elements 
(Nayroles et al. (1992)). element free Galerkin (EFG) 
(Belytschkd et al. (1994a,b,c)), particle in cell methods (PIC) 
(Sulsky et al. (1992)), reproducing kernel particle methods (Liu 
et al. (1993), Liu and Oberste-Brandenburg (1993), Liu et al. 
(1995a,b), Liu and Chen (1995)). and wavelet particle methods 
(WPM) (Liu and Oberste-Brandenburg (1993), Liu and Chen 
(1995)). Similar to other particle methods, the RKPM 
eliminates the need for a mesh, and additionally, is capable of 
treating the domain boundaries with a correction term. This 
paper is aimed at developing a procedure to generalize the 
RKPM. Through this procedure the traditional FEM can be 
treated as a special case of the RKPM establishing a natural way 
to blend the FEM and RKPM. The so-called p-enrichment or b p  
enrichment in the FEM becomes easy to implement. Moreover, 
no compatibility problem along the element boundary and no 
restriction of choosing high order window function are required. 

An alternative approach to enhancing the computational 
methods is the application of the concept of projection. Using 
multiple fields and their projections, the computational solution 
can be improved. 

PRELIMINARIES 

In mathematical physics, the solution to a differential equation, 
or a set of differential equations can be expressed as 

where 4 is a kernel function, and acts like a projection operator, 
and uR is the “reproduced” solution of u(x). This form is one of 
the fundamental developments in many interpolation methods, 
and will be referred to as the reproducing kernel methods. 
Widely used methods such as SPH, and wavelet methods also 
belong to this class of methods. One major drawback is the need 
for a special boundary treatment in finite domains. Through a 
proper construction of a boundary correction term, the artificial 
boundaries required by the SPH and wavelet methods can be 
eliminated, and the accuracy of the discrete solution is improved 
(Liu (1995)). 
In a finite domain, Eq.( 1) can be written as 

where 
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and C( x ; x  - x j )  is the correction function. 

In problems involving finite domains, the SPH solutions reveal 
amplitude and phase errors mainly due to the boundary effects. 
This phenomenon can be attributed to the failure of meeting of 
the completeness requirements. The correction function, 
C ( x ; x - x j ) ,  can be constructed in such a way to avoid the 
difficulties mentioned above. Since the integral defined in Eq. 
(2) is too complicated to be carried out analytically, it is 
generally discretized either by a grid (as in the Finite Element 
Method), or by particles (SPH methods). The class of methods 
involving mesh-free Lagrangian particles, and are concerned 
with the solution of Eq, (2) are referred to as reproducing kernel 
particle methods (RKPM). Before proceeding with the 
construction of a consistent correction function, a fiial word 
goes on the discrete convolution concept. By SpatiaVtemporal 
discretization, high-frequency replicas (commonly referred to as 
aliasing) are introduced into the system response. In complex 
mechanical systems, these non-physical frequencies may 
interact with the physical frequencies. The elimination of 
aliasing is very important in representing the true frequency 
content of the system. A comprehensive discussionfemd an error 
estimation procedure to separate physical and non-physical 
frequencies are given in Liu and Chen (1995). 

REPRODUCING CONDITIONS 

In a Galerkin finite element approximation method, the 
admissible function space, vh, consists of all linear 
combinations of shape functions NA, A=l, ...., neq (neq is the 
number of equations, i.e. the total number of unknowns): 

If the selected window functions do not automatically satisfy the 
reproducing conditions, Eq. (6). then the correction function in 
Eq. (3) is constructed such that 

- 
k=O 

The unknown functions B’s are determined by imposing the 
reproducing conditions, Eq. (6) which results in the following 
matrix equation 

(9) 

GENERALIZED REPRODUCING CONDITIONS 

Arbitram Window Function 

The reproducing conditions can be extended to a set of 
generalized linearly independent window functions including 
finite element shape functions as the window functions. As 
indicated earlier, this arbitrary set of window functions 

i. (4) 

In order to guarantee the convergence of the approximate 
Galerkin solution with successive mesh refinements, the shape 
functions have to be complete, i.e. are capable of spanning the 
linear field exactly (Hughes (1987)). 

A set of arbitrary window functions generated from the 
translations of a single function can be defined as 

These window functions may not satisfy the completeness 
requirement. Thus, it is necessary to introduce the following 
“reproducing conditions” (Liu (1995)): 

6,(x)=l and Istk(x)=O for R > 1  

where 

rg, 

&(n) = C ( x - x j ) t  @ ( x - x j ) A x j  (7) 

may not satisfy the reproducing conditions, . .  Eq. (6). Hence, the 
correction function C ( x ; x - x , )  of Eq.(6) is constructed such 
that 

With this modification of window functions, the generalized 
reproducing conditions become 

Ist,(x) = 21. Fj(  X ) h I  = 1 
j= l  

j = l  

and np designates the number of particles. 

and the B‘s are to be determined by Eq. (9). 



(a) p-refinement 

The FEM shape functions introduced in Eq. (4) belong to a 
function space which satisfies the completeness requirement. 
Therefore, the reproducing conditions need not to be enforced in 
the FEM mesh. Since the RKPM is shown to be very effective in 
handling high gradients, large variations etc. (Liu and Oberste- 
Brandenburg (1993). Liu and Chen (1995), Liu et al. (1995b)), 
the partitioning of the domain into FEM and RKPM regions in 
these types of problems may be a good choice. These ideas are 
elaborated below. 

p-FE with RKPM Enrichment 

Considering these useful properties associated with an approach 
utilizing a window function, the function space V h  can be 
modified by replacing one of the shape functions with a higher 
order window function 
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This concept is described in Fig. l(a). The completeness 
requirement is satisfied everywhere in the domain except under 
the support of qP. This type of enrichment of the finite element 
method with the RKPM will referred to as p-FE method. This 
development can be extended by substituting several shape 
functions by window functions. This p-FE fails to satisfy the 
completeness requirement unless the functions in vh are 
selected in a specihc form. The completeness conditions have to 
be imposed on an arbitrary window function to construct the 

h new functions. If we select ?/ as a set of linear independent 
window functions as illustrate&in Fig. la, theqhe consistency 
conditions are satisfied in the whole domain except under the 
support of #,(n), a. The p-FE with RKPM enrichment is 
achieved by enforcing the reproducing conditions only in region 
n. - 

gE-m With RKPM E l l m u m a  
. '  

A different enrichment can be achieved by inserting an 
additional node in the domain of interest and a higher order 
# n n e q + I ( ~ )  window function in V h  as shown in Fig. lb. 
Similar to the p-FE with RKPM enrichment, reproducing 
conditions are required in a. However, unlike the traditional hp 
finite elements, the additional window @ m q + l ( ~ )  can cover 
some of the finite element nodes and no special adjustment of 
the higher order window function is needed along the inter- 
element boundary. 

Figure 1 p-FE and hpFE refrnement with RKPM 

For a better visualization, the use of the FEM shape functions, 
and the RKPM window functions is demonstrated in Figures 2. 
Figure 2a shows the shape and window functions in their 
original form. The reproducing coliditions are applied to abtain 
the functions in Figure 2b. 
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Figure 2a. The E M  shape functions, and the RKPM window 
functions 
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Figure 2b. The shape functions after the application of the 
reproducing conditions 



MULTIPLE FIELD RKPM NUMERICAL EXAMPLES 

A multiple scale method based on WPM and RKPM was 
introduced in Liu and Oberste-Brandenburg (1993), and Liu and 
Chen (1995). Consider a two scale decomposition of u(x): 

u ( x )  = v ( x )  + W ( X )  (14) 

where v(x)  and w ( x )  are the solutions to different scales or 
different fields. A projection operator for v is defied such that 
PV=v 

u( x )  = Pu( x )  - p w ( x )  + w(  x )  (15) 

where Pu is the projected solution and Pw is the interaction 
term, and Eq. (15) is the general expression for multiple scale 
analysis. In particular, if there is no overlapping of scales 
between v(x) and w(x), then by the property of the projection 
operator, the interaction term is zero. By repeated applications of 
Eq. (15), multiple scale methods can be developed within the 
framework of multilevel data structure. 

Two sample cases are presented to clarify the7oncept of 
projection: 

Example I: Enrichedprojection method 

If Pu is the projection operator for the reproducing kernel 
domain, and w(x)=cf(x), where c is a coefficient andflx) is a 
given analytical function. Equation (15) can be rewritten as 

Exomple 2: FEM enriched with RKM 

If we choose uFEM(x)=Pu(x)  in Qza (FEM domain) and 
w(x)=Qw(x) is defined in Q, (RKPM domain), then the multiple 
scale solutioD becomes 

where Nj(x) is the FEM shape function and NP is the number of 
FEM nodes. To take full advantage of the adaptive hpfiiite 
element method with wavelet enrichment, w(x)  should not 
intersect with any essential boundary conditions. A similar 
approach in enforcing the essential boundary conditions in 
meshless approximations is presented by Krongauz and 
Belytschko (1995). 

a. COUD - ling of the RKPM with the FEM 

A simple one-dimensional case with the following equilibrium 
equation is considered to demonstrate the effect of coupling 
between the RKPM and the FEM: 

with boundary conditions 

and the forcing term 

The exact solution is given as 

1 
2 

u( x )  = x --x2 

The b-Norm results for FEM. RKPM and FEM (only on the 
essential boundary end) with RKPM are presented in Figure 3. 
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Figure 3. The convergence plot for RKPM-FEM coupling 
,, 

The advection-diffusion equation is used to demonstrate the 
concept of the multiple field RKPM 
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RKPM 
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u(0)  = 0 
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and body force 

b(x)=[++s(x-2) 1 -u  k (X)O -(X-2)O 1 
where e> is the Macaulay bracket and it is delined as 

0, x l y  
(x-r>” = { ( x - y ) ” ,  x > y  

and &x) is the Dirac delta function. The advection parameter, a, 
is chosen as 75 to ensure a boundary layer formation at the 
boundary. 

The exact solution is given as P 

The analytical form to be coupled with the RKPM is the 
boundary layer term: 

W ( X )  = cf(x) = c(1- e”) 

where c is the extra unknown to be solved for. 

As it can be seen in Figure 4 m a  Table 1, theiabsolute error in 
Lz-Norm for the multiple field RKPM is approximately half of 
that for the regular RKPM. 
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Figure 4. Error plot of the boundary layer problem 

Table 1. Errors of the boundary layer problem 

DISCUSSION AND CONCLUSIONS 

In order to combine the merits of two computational methods, 
the finite element method and the reproducing kernel particle 
method, enrichment procedures are introduced. One approach is 
based on constructing the appropriate boundary correction 
function to satisfy the boundary restraints, and the completeness 
requirements. A general set of window functions can be 
converted into a set of approximation functions by imposing the 
reproducing conditions. A p-enrichment in FEM is achieved by 
replacing some of the standard FEM shape functions by window 
functions, apd applying the reproducing conditions. In addition 
to the FEM shape functions additional window functions can be 
introduced, a so-called, hp-enrichment is obtained. A one- 
dimensional example with two finite elements to represent the 
essential boundary is considered. The rest of the domain is 
handled by the RKPM. The convergence characteristics are 
Studied. 
The second approach considers the enhancement of the FEM or 
a given field with RKPM through projection operators. The one- 
dimensional advection-diffusion equation is studied. An 
analytical boundary layer field is added on the RKPM solutions. 
The convergence characteristics are analyzed. 
The enrichment provides stable and accurate solutions in coarse 
meshes. The absolute error in the b-Norm is smaller in the 
multiple field RKPM. 
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