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Abstract 
 
This paper treats an exact elastica solution for a clamped-hinged beam, and its 
applications to a carbon nanotube.  Although the elastica has a long history, and the 
exact post-buckling solution for the Euler buckling problem has been known for at least 
150 years, it seems that the elastica solution for a post-buckled clamped-hinged beam 
has never been obtained.  Therefore, the exact solution obtained in this paper 
constitutes an addition to the existing family of elastica solutions.  As an application of 
the results, a post-buckling analysis of a single wall carbon nanotube is studied.  Also, a 
potential use of the post-buckling analysis of the carbon nanotube for the determination 
of its Young’s modulus has been indicated. 
 
 
1. Introduction 
 
Determination of post-buckling deformation of a beam has many important practical 
applications in structural mechanics.  The discovery of carbon nanotubes (Iijima, 1991; 
Iijima and Ichihashi, 1993) and its use as a structural as well as an electric material, and 
the use of beams in other micro- and nano- devices are going to require the post-
buckling analysis for a variety of beams even further.  An enormous amount of studies 
have already been conducted on various properties of the carbon nanotube (e.g., Falvo, 
et. al., 1997; Govindjee and Sackman, 1999; Iijima, 1996; Krishnan, et. al., 1998; 
Lourie, et. al., 1998; Lu, 1997; Overney, et. al., 1993; Ru, 2001; Saito, et. al., 1992; 
Wong, et. al., 1997;Yakobson, et. al., 1996; Yao and Lordi, 1998).  Basic properties of 
carbon nanotues are discussed in a book by Saito, Dresselhaus and Dresselhaus 
(1998).  Some of the above studies are related to the buckling of carbon nanotubes 
(Yakobson, et. al., 1996; Falvo, et. al., 1997; Lourie, et. al., 1998; Ru, 2001).  Three of 
them (Falvo, et. al., Lourie et. al., and Ru) use linear buckling (eigenvalue) analyses 
appropriate for the determination of the buckling load and the linear buckling mode, and 
the other one (Yakobson, et. al.) uses both molecular dynamics (MD) and a linear 
buckling (eigenvalue) analysis.  However, it seems that a post-buckling analysis of a 
carbon nanotube has not received wide attention at this point except for the MD 
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calculation, which in principle is capable of producing the post-buckling shape.  If we 
want to know the post-buckling shape, we need to perform the post-buckling analysis. 
 
In this paper, the carbon nanotube is modeled as a beam, and the post-buckling 
analysis will be performed using continuum mechanics.  Post-buckling analysis of a 
beam requires an exact analysis of the curvature, which is usually linearized in the pre-
buckling analysis of a beam including the calculation of the critical buckling loads.  
When the curvature is treated exactly, the deformation analysis (and its solution) of a 
beam is called “elastica”.  Elastica has a long history starting with Euler’s elastica 
(Euler, 1744; see also Timoshenko, 1983) for a horizontal cantilever subject to a vertical 
load at the end, and requires solving a nonlinear differential equation.  According to 
Timoshenko (1983), Euler obtained the solution for his problem by using an infinite 
series in 1744.  Euler investigated various types of elastica including column buckling in 
“De curvis elasticis (1744),” and in the limiting case, he obtained his famous buckling 
load formula.  Later in 1759, Euler simplified the derivation of the linear buckling load.  
Exact elastica solution for a column buckling in terms of Jacobian elliptic functions (see 
Timishenko and Gere, 1961) seems to have originated from Kirchhoff’s paper (1859) 
and the subsequent development (e.g., Clebsch, 1862; Hess, 1884 and 1885) based on 
Kirchhoff’s kinetic analogy (1859) of elastica with the motion of rigid body (see also 
Love, 1944).  Comprehensive list of literature on large deflections of beams up to 1962 
is provided by Frisch-Fay (1962).  Even though the elastica of a post-buckled beam has 
been studied for a long time, it seems that most of the available solutions are for a 
statically determinate beam.  To the best of author’s knowledge, no exact elastica 
solution has been obtained for a post-buckled clamped-hinged beam.   
 
The main results of this paper are an exact elastica solution for a post-buckled clamped-
hinged beam, and its applications to a carbon nanotube.  In the following, the problem 
definition is given in Section 2, the elastica solution in Section 3, the numerical results 
and applications to the carbon nanotube in Section 4, and finally, the conclusion is given 
in Section 5. 
 
 
2. Problem statement 
 
Consider an originally straight beam which is deformed by the axial force P as shown in 
Fig. 1.  One end is simply supported, and the other end is clamped.  The axial force P is 
assumed to be sufficiently large so that the buckling of the beam is already caused.  
The objective of this paper is to determine the post-buckling deformation of the beam.  
The governing equation for the clamped-hinged beam shown in Fig. 1 is given by 
 

 
2

2 sin cos 0dEI P R
ds

θ θ θ+ − =         (1) 

 
where s is the arc length along the beam measured from the hinged end, and θ is the 
angle between the tangent of the beam at s and the x-axis.  Also E is the Young’s 
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modulus, and I is the moment of inertia of the cross section of the beam, and R is an 
unknown reaction force.  Eq. (1) can be written as 
 

 
2

2
2 sin( ) 0d b

ds
θ θ α+ − =         (2) 

 
where 
 

 
2 2

2 P Rb
EI

+
=          (3) 

 

 
2 2

cos P
P R

α =
+

 

            (4) 

 
2 2

sin R
P R

α =
+

 

 
Eq. (2) can be also written as 
 

 
2

2
2 sin 0d b

ds
φ φ+ =          (5) 

 
where 
 
 φ = θ – α          (6) 
 
The relations between the arc length coordinate s and x, y coordinates are given by 
 

 cosdx
ds

θ=  

            (7) 

 sindy
ds

θ=  

 
The boundary conditions for this problem are given by 
 
 θ(0) = θ0   θ(l) = 0 
            (8) 

 (0) 0d
ds
θ

=  

 
 y(0) = 0   y(l) = 0      (9) 
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By solving Eq. (5) under the boundary conditions (8) and (9) with the auxiliary relations 
(7), θ(s), x(s), y(s), and the reaction force R can be determined. 
 
 
3. Elastica solution 
 
Let us first rewrite Eq. (8) as 
 
 φ(0) = φ0   φ(l) = -α 
            (10) 

 (0) 0d
ds
φ

=  

 
where 
 
 φ0 = θ0 - α          (11) 
 
Let us set 
 

 dv
ds
φ

=           (12) 

 
Then (5) can be written as 
 

 
2

21 sin 0
2

dv b
d

φ
φ

+ =          (13) 

 
Integrating (13), we obtain 
 

 2 2
1

1 cos
2

v b Cφ− =          (14) 

 
where C1 is an integration constant.  From (10) and (14), we obtain 
 
 C1 = – b2cos φ0           (15) 
 
Substituting (15) into (14), we have 
 
 2 2

02 (cos cos )v b φ φ= −         (16) 
 
From (12) and (16), we obtain 
 

 02(cos cos )d b
ds
φ φ φ= ± −         (17) 
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From Fig. 1, we have 
 

 02(cos cos )d b
ds
φ φ φ= − −   (0 < s < l*) 

            (18) 

 02(cos cos )d b
ds
φ φ φ= −   (l* < s < l) 

 
Integrating (18), we obtain 
 

 0

0

*

0
02(cos cos )

l dds
b

φ

φ

φ
φ φ

−
= −

−∫ ∫        (19-1) 

 

 
0*

02(cos cos )
l

l

dds
b

α

φ

φ
φ φ

−

−
=

−∫ ∫        (19-2) 

 
From (19), we have 
 

 0

0
0

*
2(cos cos )

dl
b

φ

φ

φ
φ φ−

=
−∫  

            (20) 

 
0

0

*
2(cos cos )

dl l
b

α

φ

φ
φ φ

−

−
− =

−∫  

 
From (20-1), we have 
 

 0

0
2 20

1*
sin sin

2 2

dl
b b

φ 2 ( )K kφ
φ φ

=
−

∫ =        (21) 

 
where K(k) is the complete elliptic integral of the first kind, and k is a deformation 
parameter defined by 
 

 0sin
2

k φ
=           (22) 

 
From (20-2), we have 
 

 0

2 20

1*
2

sin sin
2 2

dl l
b

φ

α

φ
φ φ

− =
−

∫        (23) 
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Let us set 
 

 0

2 20

( )
sin sin

2 2

dG
φ

α

φα
φ φ

=
−

∫         (24) 

 
Then we have 
 

 *
2
Gl l
b

− =           (25) 

 
Let us perform the following change of variables in (24). 
 

 
0

sin 12sin sin
2sin

2
k

φ
φλ φ= =         (26) 

 

 φ = α → λ = λα ≡ 1 1sin ( sin )
2k
α−  

 
 φ = φ0 → λ = π/2         (27) 
 

 
2 2

2 cos 2 cos
1 sincos

2

k kd d
k

dλ λφ λ λφ λ
= =

−
 

 
Substituting (26) and (27) into (24), we have 
 

 2 2
2 2 2 2

1 1 2 cos 2
1 sin 1 sin 1 sin

k dG d
k k kα α

π π

λ λ

λ λλ
2λ λ λ

= =
− − −

∫ ∫  

 

     
2 20

2 ( )
1 sin

dK k
k

αλ λ
λ

⎡ ⎤
= −⎢

−⎣ ⎦
∫ ⎥        (28) 

 
From the definition of the elliptic integral of the first kind, F(z, k), we have 
 

 1 1

2 20

1( , ) (sin , ) ( sin , )
21 sin

d F k sn k sn k
kk

αλ

α α
λ αλ λ

λ
− −= = =

−
∫    (29) 

 
where sn-1(u, k) is an inverse Jacobian elliptic function.  Substituting (29) into (28), we 
have 
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 [ ] 1 1( ) 2 ( ) ( , ) 2 ( ) ( sin , )
2

G K k F k K k sn
kα

αα λ − k⎡ ⎤= − = −⎢ ⎥⎣ ⎦
    (30) 

 
Substituting (21) and (30) into (25), we obtain 
 

 11 1 1 1* ( ) ( sin , ) 3 ( ) ( sin ,
2 2

l l K k sn k K k sn k
b k b k

α− −⎡ ⎤ ⎡= + − = −⎢ ⎥ ⎢⎣ ⎦ ⎣
1 )α ⎤

⎥⎦
   (31) 

 
The above equation is one of the equations to be solved in our problem.  Before 
manipulating the above equation to solve it, set us obtain the other equation for our 
problem.  From (18), we have 
 

 
02(cos cos )

dds
b

φ
φ φ

= −
−

  (0 < s < l*) 

            (32) 

 
02(cos cos )

dds
b

φ
φ φ

=
−

  (l* < s < l) 

 
From (7-2) and (32), we have 
 

 0 0

0

*

0 0
0 0

sin( ) 2sin cos( *) sin
2(cos cos ) 2 cos cos

l
y l ds d d

b b
φ φ

φ

φ α α φθ φ φ
φ φ φ φ−

+
= = =

− −∫ ∫ ∫  (33) 

 
Similarly, we obtain 
 

 
0

0

sin( )( ) ( *)
2(cos cos )

y l y l d
b

α

φ

φ α φ
φ φ

−

−

+
− =

−∫  

 

        
0 0

0 0

cos sin sin cos
2 cos cos 2 cos cos

d d
b b

α α

φ φ

α φ α φφ φ
φ φ φ φ

− −

− −
= +

− −∫ ∫   (34) 

 
Let us set 
 

 
0

0

sin
cos cos

I d
α

φ

φ φ
φ φ

−

−
=

−∫  

 

 
0

0

cos
cos cos

J
α

φ
dφ φ

φ φ

−

−
=

−∫         (35) 
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 0

0
0

cos
cos cos

L d
φ φ φ

φ φ
=

−∫  

 
From (34) and (35), we obtain 
 

 cos sin 2sin( )
2 2 2

y l I J L
b b b

α α
= + +

α        (36) 

 
From (35-3), we have 
 

 0 2
0 0

2 20

cos cos2 2 [2 ( ) ( )]
cos2 sin sin 22 2

L d d E k
πφ φ φφ λφφ φ

= = =
⎛ ⎞−⎜ ⎟
⎝ ⎠

∫ ∫ K k−   (37) 

 
where the same change of variables, Eq. (26), was used, and E(k) is the complete 
elliptic integral of the second kind.  From (35-1), we have 
 

 2 2 2sin2 2 2 sin 2 2 sin 2 2
2cos

2

I d d k d k
α α α

π π π

cos αλ λ λ

φ φλ λ λ λφ= − = − = − = −∫ ∫ ∫ λ  

    2 22 2 sin
2

k α
= − −         (38) 

 
Similarly from (35-2), we have 
 

 2 22 2 2
2 2

cos2 2 [2 1 sin
1 sincos

2

dJ d k d
kα α α

π π π

λ λ λ

φ λλ λ λφ ]
λ

= = − −
−

∫ ∫ ∫  

 2[2( ( ) ( , )) ( ( ) ( , ))]E k E k K k F kα αλ λ= − − −  
 
 2[2 ( ) ( ) (2 ( , ) ( , ))]E k K k E k F kα αλ λ= − − −      (39) 
 
where E(z, k) is the elliptic integral of the second kind.  From (9) and (36) we have 
 

 1 [ cos sin 2 sin ] 0
2

I J Lα α α+ + =        (40) 

 
Substituting (37), (38), and (39) into (40), we finally obtain 
 

 2 2sin [3{2 ( ) ( )} {2 ( , ) ( , )}] 2cos sin 0
2

E k K k E k F k kα α
αα λ λ α− − − − − =   (41) 
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Eqs. (31) and (41) constitute a pair of transcendental equations for k and α.  These are 
highly nonlinear equations.  Before going any further, let us write down the definitions of 
complete and incomplete elliptic integrals of the first kind and the second kind as well as 
the Jacobian elliptic functions below. 
 

 2
2 20

( )
1 sin

dK k
k

π θ
θ

=
−

∫  

 

 2 22
0

( ) 1 sinE k k d
π

θ θ= −∫  

            (42) 

 
2 20

( , )
1 sin

dF k
k

φ θφ
θ

=
−

∫  

 
 2 2

0
( , ) 1 sinE k k d

φ
φ θ θ= −∫  

 

 
2 20 (1 )(1 )

x dxu
2x k x

=
− −

∫  (-1 ≤ x ≤ 1)  ↔ x = sn(u,k) 

 
 2( , ) 1 ( , )cn u k sn u k= −         (43) 
 
 2 2( , ) 1 ( , )dn u k k sn u k= −  
 
Let us also introduce a non-dimensional load parameter β defined as 
 

 
2Pl

EI
β =           (44) 

 
From (3), (4) and (44), we have 
 
 secbl β α=           (45) 
 
By using (42) and (45), Eqs. (31) and (41) can be rewritten as 
 

 
1 1sin ( sin )

2
2 20

sec 3 ( )
1 sin

k dtK k
k t

α

β α
−

= −
−

∫  
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1 11 1sin ( sin ) sin ( sin )2 22 2

2 20 0
sin [3{2 ( ) ( )} 2 1 sin ]

1 sin
k k dtE k K k k tdt

k t

α α

α
− −

− − − +
−

∫ ∫  

 2 22cos sin 0
2

k αα− − =         (46) 

 
Eq. (46) has to be solved for k and α for a given β.  It should be noted that the solution 
to the above equation represents a buckled solution. This means that the solution k = 0 
and α = 0 does not correspond to β = 0.  In fact, it can be shown that the corresponding 
β is the smallest positive solution (βcr) of the following equation (see Appendix A). 
 
 tan β = β          (47) 
 
Eq. (47) is the same characteristic equation for the clamped-hinged beam as obtained 
from a linear buckling analysis.  Thus we have recovered the result of the linear 
buckling analysis from our nonlinear analysis.  The value of βcr is given by 
 
 βcr = 4.49341          (48) 
 
On the other hand, the original equation (1) together with the boundary conditions (8) 
and (9) permits the trivial solution for any value of P when θ0 = 0.  The trivial solution is 
given by 
 
 θ(s) = 0, R = 0  for all P      (49) 
 
In order to solve (46), let us introduce another variable n defined as 
 

 
sin

2n
k

α

=           (50) 

 
By using (50), Eq. (46) can be rewritten as 
 
 2 2 11 2 [3 ( ) ( , )]k n K k sn n kβ −= − −        (51-1) 
 

 
1 12 2 sin sin2 2

2 2 2 20 0

1 3(2 ( ) ( )) 2 1 sin
1 2 1 sin

n nn k n dtE k K k k tdt
k n k t

− −⎡ ⎤−
− − − +⎢ ⎥− −⎣ ⎦

∫ ∫  

 21 n− − = 0           (51-2) 
 
Eq. (51) has to be solved for k and n for a given β.  Since this is a pair of transcendental 
equations, it has to be solved numerically.  The way we proceed is as follows.  First, 
(51-2) is solved for n(k) as a function of k.  Once this is done, the relationship between k 
and β can be obtained from (51-1) as 
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1sin ( )2 2

2 20
1 2 ( ) [3 ( ) ]

1 sin

n k dtk n k K k
k t

β
−

= − −
−

∫      (52) 

 
If we want to obtain a specific value of k for a given β, we can solve (52) for k 
graphically or numerically.  For most of the applications, the graphical solution is good 
enough.  Once k and n(k) are determined for a given β, α and θ0 are obtained as 
 
  12sin ( )nkα −=
            (53) 
  1 1

0 2[sin sin ( )]k nθ − −= + k
 
By using (53), the reaction force R can be obtained as 
 

 2
2tan tanEIR P

l
α β= = α         (54) 

 
Let us now obtain φ(s) as a function of s.  Integrating (32-1), we obtain 
 

 
0

0

2
cos cos

dbs
φ

φ

φ
φ φ

= −
−∫    (0 < s < l*)    (55) 

 
From (24), (30) and (55), we have 
 

 1( ) 1( ) ( sin , )
2 2

Gbs K k sn k
k

φ φ−= = −   (0 < s < l*)    (56) 

 
Even though (56) is defined for s < l*, it can be analytically continued for the whole 
domain (0 < s < l).  Eq. (56) can be inverted as 
 

 sin ( ( ) , ) ( ( ), )
2

k sn K k bs k k sn bs K k kφ
= − = +  (0 < s < l*)   (57) 

 
where the first of the following properties of Jacobian elliptic functions is used. 
 
  ( 2 , ) ( ,sn u K k sn u k+ = − )

)

)

 
         (58) ( 2 , ) ( ,cn u K k cn u k+ = −
 
  ( 2 , ) ( ,dn u K k dn u k+ =
 
Differentiating (57) with respect to s, we obtain 
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 2 (d bk cn bs K
ds

)φ
= +          (59) 

 
where some of the following properties of Jacobian elliptic functions are used. 
 

 d snu cnu dnu
du

=  

 

 d cnu snu dnu
du

= −  

 

 2d dnu k snu cnu
du

= −         (60) 

 
  2 2 2 1dn u k sn u+ =
 
  2 2 1sn u cn u+ =
 
By using (59), the bending moment M(s, k) is obtained as 
 

 ( , ) 2 ( )d dM s k EI EI EIbk cn bs K
ds ds
θ φ

= = = +      (61) 

 
A non-dimensional bending moment M*(s, k) is defined as 
 

 ( , ) 2 2*( , ) ( ) sec [ ( ) sec ]M s k EIbk k sM s k cn bs K cn K k
Pl Pl l

α β α
β

≡ = + = +  (62) 

 
where β is defined in (44).  Let us now integrate (7).  From (7) together with the 
boundary conditions, x(0) = y(0) = 0 , we have 
 

 
0 0

( ) cos cos( ) ( )cos ( )sin
s s

x s ds ds J s I sθ φ α α α= = + = −∫ ∫  

            (63) 

 
0 0

( ) sin sin( ) ( )cos ( )sin
s s

y s ds ds I s J sθ φ α α α= = + = +∫ ∫  

 
where 
 
 

0
( ) sin

s
I s dsφ= ∫  

            (64) 

 
0

( ) cos
s

J s dsφ= ∫  
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By using (57), we have 
 
 sin 2 ( ) ( )k sn bs K dn bs Kφ = + +  
            (65) 
  2cos 2 ( ) 1dn bs Kφ = + −
 
Substituting (65) into (64), we obtain 
 

 
0

22 ( ) ( ) (
s k )I k sn bs K dn bs K ds cn bs K

b
= + + = −∫ +  

            (66) 

 2 2

0

22 ( )
s bs K

K
J dn bs K ds s dn u du s

b
+

= + − =∫ ∫ −  

 
where the following integral formula was used. 
 
          (67) snu dnu du cnu= −∫
 
Substituting (66) into (63), we finally obtain 
 

 2 2( ) cos [ ( ) ] sin ( )kx s L s s cn bs
b b

α α= − + K+  

            (68) 

 2 2( ) cos ( ) sin [ ( ) ]ky s cn bs K L s s
b b

α α= − + + −  

where 
 

          (69) 2( )
bs K

K
L s dn u du

+
= ∫

 
 
4. Numerical results and applications to a carbon nanotube 
 
The key result for our problem is the solution to Eq. (51), which provides the relationship 
between β and k given by (52).  The numerical results for β(k) are shown in Fig. 2.  
Similarly, the numerical results for θ0(k), α(k) and tan α(k), which can be obtained from 
(53), are shown in Figs. 3-5.  It is interesting to note in Fig. 2 that there is a maximum 
value for βmax, which is about 4.7968, when k ≈ 0.6695.  This means that the buckled 

beam can accept the load up to 2
max 2

EI
l

β , and there is a physical instability beyond k= 

0.6695 (≡ kcr).  The value of θ0(k) at k= 0.6695 is about 1.937 rad = 110°.  After θ0(k) 
reaches 110°, the buckled beam continues to deform with a decreasing load P 

(= 2
2

EI
l

β ).  The fact that there is a maximum value for β was not entirely obvious when 
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the analysis was initiated.  It can be seen from Eq. (54) and Fig. 5 that, unlike the load 
P, the reaction force R continues to increase with k beyond kcr.   
 
Also, the non-dimensional bending moment M*(s, k) as well as the coordinates (x(s), 
y(s)) along the displacement curve can be obtained from Eqs. (62) and (68).  The 
numerical results for M*(s, k) and (x(s), y(s)) when k = 0.3, 0.5, 0.7, 0.8 are shown in 
Figs. 6-9.  The physical instability mentioned above can be clearly seen in the deformed 
buckled shapes shown in Figs. 8-1 and 9-1, where θ0(k) is greater than 110°.  It is also 
seen from Figs. 6-1, 7-1, 8-1, and 9-1 that the entire span of the beam in the x-direction 
continues to shrink as k increases.  For example, when k = 0.7, the span of the beam in 
the x-direction has already shrunk more than 50%.  At the same time, the lateral 
deflection reaches more than 30% of the length of the beam. 
 
As an illustration of the application of the above results, let us consider a single wall 
carbon nanotube of radius r = 7Å, thickness t = 3.4Å, and length  = 30 nm under a 
compressive load P with clamped-hinged boundary conditions.  Then the outer radius a 
and the inner radius b are given by a = 8.7Å, b = 5.3Å.  With these dimensions, the area 
moment of inertia I is calculated as I = 4.94 x 10

l

-37 m4.  If we assume the Young’s 
modulus E as E = 1000 GPa, the critical buckling load Pcr is calculated as Pcr = 1.11 x 
10-8 (N), where βcr = 4.49341 (see Eq. (48)) has been used.  We notice that the crirtical 
buckling load is very small.  Next, let us suppose that the carbon nanotube is already 
buckled with the deformation parameter k = 0.4 (see Eq. (23)).  Using Fig. 2, the 
corresponding β is obtained as β = 4.624.  Then the required load P as well as the tip 
angle θ0 are determined as P = 1.17 x 10-8 (N), θ0 = 1.021 rad = 58.5°.  It is seen from 
these calculations that as soon as the critical buckling load is reached, the deformation 
becomes very large very quickly.  Now, we can also reverse the above procedure.  If we 
happen to know the compressive load P and the tip angle θ0, then by using Figs. 2 and 
3, we can determine the flexural rigidity EI of the carbon nanotube as follows. 
 

   
2

0 0 0 0 0 2
0

( ) ( ) Plk k k EIθ β β
β

= ⇒ = ⇒ =     (70) 

 
This indicates a potential use of the post-buckling analysis of the carbon nanotube for 
the determination of its Young’s modulus. 
 
 
5. Conclusion 
 
This paper presents an exact elastica solution for the post-buckling analysis of a 
clamped-hinged beam, and its applications to a carbon nanotube.  Although the elastica 
has a long history, and the exact solution for the Euler buckling problem has been 
known for about 150 years or maybe more, it seems that the elastica solution for a post-
buckled clamped-hinged beam has never been obtained.  Therefore, the present 
elastica solution constitutes a new addition to the existing list of elastica solutions (see 
Frisch-Fay, 1962).  As part of the analysis, the characteristic equation of the linear 
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buckling analysis for the clamped-hinged beam is recovered from our nonlinear 
analysis.  As an application of the results, a post-buckling analysis of a single wall 
carbon nanotube is treated.  It is found that as soon as the critical buckling load is 
reached, the deformation becomes very large very quickly.  Also, a potential use of the 
post-buckling analysis of the carbon nanotube for the determination of its Young’s 
modulus has been indicated. 
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Appendix A.  Proof that the corresponding β is non-zero 
 
Let us use Eq. (51) instead of Eq. (46) for our purpose.  Eq. (51) is written below for 
convenience. 
 
 2 2 11 2 [3 ( ) ( , )]k n K k sn n kβ −= − −        (A1-1) 
 

 
1 12 2 sin sin2 2

2 2 2 20 0

1 3(2 ( ) ( )) 2 1 sin
1 2 1 sin

n nn k n dtE k K k k tdt
k n k t

− −⎡ ⎤−
− − − +⎢ ⎥− −⎣ ⎦

∫ ∫  

 21 n− − = 0           (A1-2) 
 
We want to investigate the behavior of the above equation when k approaches zero.  In 
the limit as k goes to zero, (A1) becomes 
 

 13 sin
2

nπβ −= −  

            (A2) 

 
2

13 1sin 0
2

nn
n

π − −
− − =  

 
We want to show that β defined above is the smallest positive root of the following 
equation. 
 
 tan β = β          (Α3) 
 
It can be easily seen from (A2-1) that 
 
 π ≤ β ≤ 2π          (Α4) 
 

since 1sin
2 2

nπ π−− ≤ ≤ .  Now, all we need to show is that β of (A2) satisfies (A3).  From 

(A2), we have 
 

 
2 23 1 1sin cos cos

2
n nn

n n
π β

⎛ ⎞− −
= − = − = −⎜ ⎟⎜ ⎟

⎝ ⎠
     (A5) 

 
From (A5), we obtain 
 

 
2

2
2

1 1tan sec 1 1
cos

n
n

β β
β

−
= − = − = β=      (A6) 
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since 0 < n < 1 from (A2-2).  Q.E.D. 
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Figures and Figure Captions 
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 Fig. 1.  Clamped-hinged beam with Cartesian coordinates 
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Fig. 2.  Relationship between the load parameter β and  
  the deformation parameter k 
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  Fig. 3.  Tip angle θ0 as function of k 
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  Fig. 4.  α as a function of k 
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k = 0.3  
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 Fig. 6-1.  Non-dimensionalized deformation of the beam when k = 0.3  
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 Fig. 6-2.  Non-dimensional bending moment along the buckled beam 

     when k = 0.3 
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 k = 0.5 
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 Fig. 7-1.  Non-dimensionalized deformation of the beam when k = 0.5 
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 Fig. 7-2.  Non-dimensional bending moment along the buckled beam  

     when k = 0.5 
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 k = 0.7 
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 Fig. 8-1.  Non-dimensionalized deformation of the beam when k = 0.7 
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 Fig. 8-2.  Non-dimensional bending moment along the buckled beam  

     when k = 0.7 
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k = 0.8  
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 Fig. 9-1.  Non-dimensionalized deformation of the beam when k = 0.8 
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 Fig. 9-2.  Non-dimensional bending moment along the buckled beam  

     when k = 0.8 
 
 
 

 
 


