Modeling laser beam-rock interaction.

PDF Version Also Available for Download.

Description

The optimal use of lasers requires the understanding of the primary parameters pertinent to laser beam-material interactions. Basically, the laser beam is a heat source that can be controlled to deliver a wide range in intensities and power. When interacting with a material, reflection at the surface, and transmission and absorption through the material occur. The material interaction process is governed by the irradiance (power/unit area) of the incident beam and the interaction time resulting in an amount of heat/energy applied to the material per unit area. The laser beam is a flexible heat source where its intensity and interaction ... continued below

Physical Description

8 pages

Creation Information

Leong, K. H. July 23, 2003.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The optimal use of lasers requires the understanding of the primary parameters pertinent to laser beam-material interactions. Basically, the laser beam is a heat source that can be controlled to deliver a wide range in intensities and power. When interacting with a material, reflection at the surface, and transmission and absorption through the material occur. The material interaction process is governed by the irradiance (power/unit area) of the incident beam and the interaction time resulting in an amount of heat/energy applied to the material per unit area. The laser beam is a flexible heat source where its intensity and interaction with materials can be controlled by varying the power and size of the beam or the interaction time. For any material, a minimum amount of energy has to be absorbed for the material to be ablated by the laser beam, i.e., a solid has to be heated to liquefy and then vaporize. Under certain conditions, the photon energy may be able to break the molecular bonds of the material directly. In general, the energy absorbed is needed to vaporize the material and account for any heat that may be conducted away. Consequently, the interaction is a heat transfer problem. The relevant parameters are the heat flux and total heat input to the material. The corresponding parameters for the laser beam- material interaction are the irradiance of the beam and the interaction time. The product of these two parameters is the energy applied per unit area. A high irradiance beam may be able to ablate a material rapidly without significant heat transfer to surrounding areas. For drilling or cutting materials, a high intensity beam is required for laser ablation with minimal heat lost to the surrounding areas. However, at high beam irradiance (>1 GW cm{sup -2} for Nd:YAG beams), plasma formed from ionization of gases and vapor will partially absorb or diffract the beam. Reduced penetration of the material results. Similarly, in welding using CO2 lasers where the beam irradiance is {approx}1 MW cm{sup -2}, the plasma plume formed decreases penetration. A high velocity jet of inert gas is usually used to blow away the plasma.

Physical Description

8 pages

Source

  • Other Information: PBD: 23 Jul 2003

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: ANL/TD/TM03-03
  • Grant Number: W-31-109-ENG-38
  • DOI: 10.2172/822584 | External Link
  • Office of Scientific & Technical Information Report Number: 822584
  • Archival Resource Key: ark:/67531/metadc776911

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • July 23, 2003

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • March 29, 2016, 8:14 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Leong, K. H. Modeling laser beam-rock interaction., report, July 23, 2003; Illinois. (digital.library.unt.edu/ark:/67531/metadc776911/: accessed November 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.