

Published on Web 02/19/2009

Unusual Electronic Features and Reactivity of the Dipyridylazaallyl Ligand: Characterizations of (smif)₂M [M = Fe, Co, Co⁺, Ni; smif = {(2-py)CH}₂N] and [(TMS)₂NFe]₂(smif)₂

Brenda A. Frazier, Peter T. Wolczanski, *,† Emil B. Lobkovsky, and Thomas R. Cundari‡

Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, and Department of Chemistry, University of North Texas, Box 305070, Denton, Texas 76203-5070

Received November 14, 2008; E-mail: ptw2@cornell.edu

Nitrogen donor ligands have played a historical and prominent role in coordination chemistry from its beginnings in Werner's time, 1 yet new variants continue to emerge. During the investigation of new chelating ligands, a degradation led to the discovery of an azaallyl ligand, (2-py)CHNCH(2-py) (smif), whose chemical properties are intriguing. A related decomposition of ((2-py)CH₂)₂NH led to one previous example, (smif)₂Zn.² Synthesized from the condensation of 2-pyridylaldehyde and 2-pyridylmethylamine (99%), (smif)H is readily deprotonated by LiN(TMS)₂ to afford (smif)Li (73%). Initial synthetic studies and brief insights into the electronic features and reactivity of smif are provided herein.

Treatment of FeBr₂(THF)₂, CoCl₂, and NiCl₂(dme) in THF with 2 equiv of (smif)Li (generated in situ) afforded (smif)₂M [M = Fe (1), 52%; Co (2), 87%; Ni (3), 67%]. Alternatively, exposure of Fe[N(SiMe₃)₂]₂THF³ with 1 or 2 equiv of (smif)H provided (smif)FeN(TMS)₂ (4, 74%) or 1 (80%). Solutions of dark-green 1 and deep magenta 2 and 3 were intensely colored and afforded black-purple and gold crystalline solids, respectively, indicative of complementary reflected light. Their structures are roughly D_{2d} according to NMR spectra, which reveal one smif environment, and X-ray crystallography, as the view of 1 in Figure 1 illustrates.

1 is diamagnetic, and its Mössbauer spectrum (Figure 2) is consistent with a covalent, low-spin Fe(II) complex. SQUID data show that 2 exhibits a magnetic moment ($\mu_{\rm eff}$) of 1.7 at 10 K, consistent with an $S=\frac{1}{2}$ ground state (GS), but $\mu_{\rm eff}$ rises to >3.0 at 300 K.⁴ Its EPR spectrum at 30 K shows a rhombic signal with Co hyperfine couplings: g[A(Co)] = 2.01 [44 G], 2.135 [66 G] and 2.21 [64 G]. 3 is EPR-silent but manifests a $\mu_{\rm eff}$ of 2.8 at 300 K, with only a minor attenuation below 10 K, consistent with an S=1 GS.

The structures of 1-3 are reminiscent of axially compressed terpy derivatives.⁵ Iron complex 1 displays short aza (N_a) and pyridine (N_{py}) Fe-N distances of 1.9012(14) and 1.9634(12) Å, respectively (Table 1), in a symmetric (i.e., D_{2d}) environment, corroborating its low-spin character. The distortion from idealized O_h coordination is evidenced by the N_{py} -Fe- N_{py} angle of 164.53(11)°. In contrast to 1, the bis(amide) complex $(dpma)_2$ Fe $[dpma = ((2-py)CH_2)_2N]$ (5) possesses metric parameters consistent with its S = 2 ($\mu_{eff} = 5.0$) GS, and its UV-vis spectrum shows no band more intense than 5000 M^{-1} cm⁻¹.

Two independent molecules of **2** exhibit longer average Co–N distances $[d(\text{CoN}_a) = 1.93(3) \text{ Å}; d(\text{CoN}_{py}) = 2.08(8) \text{ Å}]$ and smaller bite angles [e.g., $\angle N_{py}\text{CoN}_{py} = 160.9(25)^\circ$], and one smif is slightly canted in the plane perpendicular to the first $[\angle N_a\text{CoN}_a' = 176.1(18)^\circ]$. **3** possesses two smif ligands at equivalent long

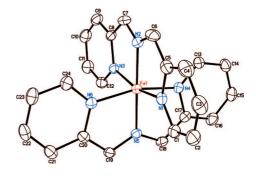


Figure 1. Molecular view of (smif)₂Fe (1).

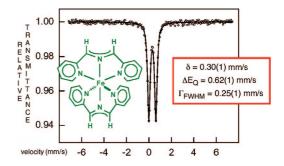


Figure 2. Zero-field Mössbauer spectrum of (smif)₂Fe.

distances $[d(\text{NiN}_a) = 2.019(5) \text{ Å}; d(\text{NiN}_{py}) = 2.093(9); \angle \text{N}_{py}\text{NiN}_{py} = 158.1(4)^\circ], \text{ with a cant similar to that in } 2 [\angle \text{N}_a\text{NiN}_a' = 176.06(8)^\circ].$

A better grasp of the electronic structures, geometries, and optical features of 1-3 were obtained from density functional theory (DFT) calculations. Figure 3 shows a simplified orbital diagram, which reveals occupied nonbonding azaallyl carbon-based orbitals that reside *above* the " t_{2g} " set $[d_{xy}(b_1); d_{xz}, d_{yz}(e) \text{ in } D_{2d}]$. These orbitals maintain a roughly constant position at about -4.0 eV for 1-3 and differentiate smif from related tridentate ligands such as terpy^{5,6} by affording high-intensity intraligand (IL) bands. Two large features in the UV-vis spectra of (smif)₂M [1, 597 nm (16 000 M^{-1} cm⁻¹), 441 (42 000); **2**, 563 (29 000), 401 (20 000); **3**, 574 (50 000), 399 (18 000)] were assigned as $C^{nb} \rightarrow L\pi^*$ IL bands on the basis of time-dependent DFT (TDDFT) calculations on 1. Its calculated spectrum, which appeared blue-shifted by ~0.25 eV, revealed a minor MLCT component in these bands. The TDDFT study permitted a tentative identification of d-d bands at ~18 000 and 25 000 cm⁻¹. Calculated splittings of the O_h t_{2g} orbitals into $b_1(d_{xy})$ and $e(d_{xz},\,d_{yz})$ of D_{2d} and of O_h e_g into $b_2(d_{x^2-y^2})$ and $a_1(d_{z^2})$ of D_{2d} are <1600 cm⁻¹. Consequently, 1 can be estimated (Tanabe-Sugano) to have $\Delta_0 \ge 18\,000 \text{ cm}^{-1}$ and $B \approx 470 \text{ cm}^{-1}$, consistent with the covalency shown in the Mössbauer spectrum.

[†] Cornell University.

^{*} University of North Texas.

Table 1. Structural Parameters for (smif)₂M (M = Fe, 1; Co, 2; Ni, 3), [(smif)₂Co]OTf (2+), (dmpa)₂Fe (5), and [(TMS)₂NFe]₂(smif)₂ (4₂)^a

cmpd	d(MN _a)	$d(MN_{py})$	d(CN _a)	$\angle N_a M N_{py}$	$\angle N_a M N_{py}'$	$\angle N_a M N_a'$	$\angle N_{py}MN_{py}$	$\angle N_{py}MN_{py}'$
1	1.9012(14)	1.9634(12)	1.333(3)	82.3(2)	97.7(5)	179.11(6)	164.53(11)	91.0(12)
2^b	1.93(3)	2.08(8)	1.337(7)	80.5(12)	95.1(2)-102.1(2)	177.5(3)	160.9(25)	91.6(18)
2 +	1.8768(11)	1.9252(19)	1.331(9)	83.9(2)	96.1(7)	179.05(10)	167.68(9)	90.7(19)
3^{b}	2.019(5)	2.093(9)	1.325(4)	79.1(3)	96.6(2)-104.6(2)	176.06(8)	158.1(4)	92.1(16)
5^{b}	2.001(13)	2.201(13)	1.418(2)	75.5(4)	99.8(2)-109.5(2)	175.9(16)	150.9(16)	86.90(7)-101.00(7)
$\mathbf{4_2}^c$	1.9432(10)	2.193(3)	1.4345(16)	77.29(13)	102.7(11)	178.53(4)	154.48(4)	

^a Distances (Å) and angles (deg) are averages unless a range is given. N_a is the aza nitrogen and N_{pv} a pyridine nitrogen; primes distinguish different smif ligands. ^b Two molecules in the asymmetric unit. ^c N_a' is (TMS)₂N at 1.9538(10) Å.

Figure 3 indicates that smif may be redox-active $^{7-12}$ in the case of 2. For 1, nonbonding, carbon-based azaallyl orbitals are the HOMO and HOMO-1. Ligand-field orbitals drop in energy in going from Fe to Co to Ni, but the additional electron in 2 (vs 1) may reside in a ligand π^* orbital, rendering 2 formally as Co³⁺(smif^{1.5-})₂. Discrete structural changes are difficult to assess because of delocalization into the py π^* framework. Oxidation of 2 with AgOTf affords magenta [(smif)₂Co]OTf (2+, 81%), which possesses IL bands at 586 nm (23 000 $M^{-1}\ cm^{-1}$) and 383 nm (13 000 M⁻¹ cm⁻¹). Symmetric (D_{2d}) structural features of **2**+ are consistent with its low-spin d⁶ character. In 3, the $d_{x^2-y^2}$ (b₂) and d_{z^2} (a₁) orbitals drop below the smif π^* orbitals, and the complex is best described as Ni(II), consistent with its long d(NiN) and EPR silence. The smif-based orbitals stay remarkably consistent for 1-3but may be adjusted in future generations through the appropriate choice of substituents.

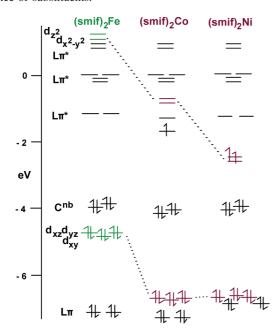


Figure 3. Simplified MO diagrams of 1-3. L stands for smif and C for azaallyl carbon. The dotted lines trace the ligand-field orbitals from Fe to Co to Ni.

The C^{nb} orbitals have $\sim 50\%$ ionic and $\sim 50\%$ covalent character and are "non-innocent" in terms of reactivity. Complex 4 is a dimer in the solid state, as Figure 4 illustrates. In solution, 4 is emeraldgreen, with IL bands at 633 nm (52 000 M⁻¹ cm⁻¹) and 399 nm (37 000 M⁻¹ cm⁻¹), but orange crystals reveal its conversion to the amide dimer [(TMS)₂NFe]₂(smif)₂ (4₂). ¹H NMR spectral analysis affords a $K_{\rm eq}$ value of ${\sim}4 \times 10^{-4}~{\rm M}^{-1}~(\Delta G^{\circ} \approx 5~{\rm kcal/mol})$ for the reaction 2 $4 \rightleftharpoons 4_2$. The dimerization can be construed as either a diradical coupling or a nucleophile/electrophile event, and polar and nonpolar reactivity is anticipated for the smif backbone.

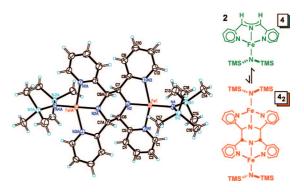


Figure 4. Molecular view of [(TMS)₂NFe]₂(smif)₂ (4₂), obtained from dimerization of 4.

The smif ligand provides a rare opportunity to view a new homologous series of first-row transition-metal complexes¹² and manifests a unique optical density that may be exploited in various photochemical applications. Physical studies of 1-3 and variants as well as $(smif)_2M$ (M = V, Cr, Cr⁺, Mn) are ongoing.

Acknowledgment. P.T.W. thanks the NSF (CHE-0718030) and T.R.C. the DOE (DE-FG02-03ER15387), and we also thank Prof. Karsten Meyer, Dr. Suzanne Doucette, Dr. Susanne Mossin, and Dr. Joerg Sutter (Univ. Erlanger-Nuremberg) for experimental assistance.

Supporting Information Available: Experimental details, CIF files, NMR, UV-vis, and EPR spectra, and SQUID data for all compounds. This material is available free of charge via the Internet at http:// pubs.acs.org

References

- (1) Kauffman, G. B. Alfred Werner: Founder of Coordination Chemistry;
- Springer-Verlag: Berlin, 1966. Westerhausen, M.; Kneifel, A. N. *Inorg. Chem. Commun.* **2004**, *7*, 763– 766.
- Olmstead, M. M.; Power, P. P.; Shoner, S. C. Inorg. Chem. 1991, 30, 2547-
- (4) Krivokapic, I.; Zerara, M.; Daku, M. L.; Vargas, A.; Enachescu, C.; Ambrus, C.; Treganna-Piggott, P.; Amstutz, N.; Krausz, E.; Hauser, A. Coord. Chem. Rev. **2007**, 251, 364–378. Constable, E. C. Adv. Inorg. Chem. **1986**, 30, 69–121.
- Wadman, S. H.; van der Geer, E. P. L.; Havenith, R. W. A.; Gebbink, R. J. M.; van Klink, G. P. M.; van Koten, G. J. Organomet. Chem. 2008,
- (7) Bart, S. C.; Chlopek, K.; Bill, E.; Bouwkamp, M. W.; Lobkovsky, E.; Neese, F.; Wieghardt, K.; Chirik, P. J. J. Am. Chem. Soc. 2006, 128, 13901-13912.
- (8) Zaresh, R. A.; Ziller, J. W.; Heyduk, A. F. Angew. Chem., Int. Ed. 2008, *47*, 4715–4718.
- (9) Stanciu, C.; Jones, M. E.; Fanwick, P. E. J. Am. Chem. Soc. 2007, 129, 12400-12401
- (10) (a) Pierpont, C. G. Coord. Chem. Rev. 2001, 219, 415-433. (b) Pierpont, C. G. Coord. Chem. Rev. 2001, 216, 99–125.
- (11) (a) Spikes, G. H.; Bill, E.; Weyhermüller, T.; Wieghardt, K. Angew. Chem., (a) Spines, G. H., Bill, E., Weyhermuller, I.; Wieghardt, K. Angew. Chem., Int. Ed. 2008, 47, 2973–2977. (b) Lu, C. C.; Bill, E.; Weyhermüller, Bothe, E.; Wieghardt, K. J. Am. Chem. Soc. 2008, 130, 3181–3197.
 (12) Ray, K.; Petrenko, T.; Wieghardt, K.; Neese, F. Dalton Trans. 2007, 1552–1566.

JA8089747