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In a continuing investigation into the reactivity of low-coordinate
transition metal complexés? d? group 6 (siloxM=N'Bu

(M = Cr, Mo (1), W (2))° species were sought as lower-symmetry

analogues to (siloxM (M =V, Nb-L (L = 4-picoline, PMg), Ta;
silox = 'BuzSiO). The large singlettriplet gap accorded (siloxJa
renders it stable, whereas the niobium congener has not be
isolated. Likewise, whil@ has been crystallographically character-
ized? the second row analogue, (silgkjo=N'Bu (1), proved to
be elusive, and [(siloxMo=NBu],(u-Hg) (1,-Hg) was prepared
instead. Its stability, combined with a sensitivity to nucleophilic
attack, is rationalized by 3c4e bondifigind its frontier orbitals
can be analyzed to estimate a Me-bond energy.®

Treatment of (dme)GMo(=N'Bu),° with 2 equiv of'BuzSiOH
and 1 equiv of HCI in benzene affordedf#Bu]Cl and (silox)Cl,-
Mo=N'Bu (3, 82%). Whereas (silof)V=N'Bu (2) was isolated
from reduction of the analogous tungsten complexarious
reducing agents failed to elicit “(silofylo=N'Bu (1)". Instead,
Na/Hg reduction oB yielded olive-green, paramagnetic [(silgMp=
NBu],(u-Hg) (1,-Hg, 56%)! whoseCy, structure is composed of
distorted trigonal MoGN cores that lean slightly toward the linear
u-Hg bridge from the imido position (Figure 1).

High level quantum calculations conducted on the model

[(HO),Mo=NH],Hg (1'>-Hg)!213reveal a 3c4e MgHg interaction
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Figure 1. Molecular view of [(silox)Mo=N'Bu],Hg (1-Hg). Selected bond
distances (A) and angles (deg): Mblg, 2.6810(5); Me-N, 1.718(3);

Mo—0, 1.894(2), 1.905(2); ©Mo—0, 113.60(9); -Mo—N, 119.91(11),

121.33(11); N-Mo—Hg, 84.51(8); G-Mo—Hg, 103.37(7), 105.42(7).

(Figure 2)8 consistent with the modest electronegativity difference

between Hg gy = 2.00) and Mo gv, = 2.16). The 3c4e situation
is unusual because tegmmetriccombination of ¢ orbitals derived
from (HOLMo=NH (1'))** interacts with the Hg 6s orbital to
generate the bonding MO (dat —8.22 eV; MoNxz"-contributions
are also evident), while the antisymmetric combination, (&b
—5.74 eV) is essentially “non-bonding” because the Hgdpital
is too energetically high to interact.

The frontier orbitals ofl',-Hg are thexr (1a, —2.70 eV) and
a* (1bg, —2.51 eV) combinations of the,dorbitals from1’; the
former manifests essentially no contribution from Hg,Gmd the
Mo—Hg rotational barrier is negligible. Note thatds the HOMO
of 1', and ¢, is ~0.8 eV higher as it is a* orbital of the Mo=N
interaction. The small distortion of the-Mo—0O angles £120°)
in 1', 1'-Hg, and1,-Hg lowers the MoQz* character of ¢, at the
expense of g.1314 Magnetic studies (SQUID) corroborate the
proximity of the 1@ and 1k orbitals. A 4 K the ground-state
approachesAg, but at 300 K,1,-Hg exhibits aues of 1.7 ug due
to TIP (1270 x 10°® emu) resulting from mixing with théB,
excited state (i.e AE(*Ag — 3By) ~ 550 cn1? (estimated)).

Calculations on the scission of [(H®Jo=NH],Hg (1',-Hg) to
(HO);Mo=NH (1') and [(HO}Mo=NH]Hg (1'-Hg) place the
dissociation enthalpy at 22.4 kcal/méi®yet 1,-Hg is indefinitely
stable in benzene solution at 2@; at 140°C, its degradation rate
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Figure 2. 3c4e bonding in [(siloxMo=N'Bu],Hg (1-Hg); four states
derived from its frontier orbitals.

is roughly 1 x 107% s71 (AG* ~ 32 kcal/mol). Dissociation of
1,-Hg to 1 and1-Hg requires a surface crossing, since each product
is calculated to be a triplet. While several studies have shown that
intersystem crossings are adiabatic when heavy elements are
involved}6-18 the orbital symmetry ofl,-Hg (0%0%7?) is different
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from the products of the quintet surface!f* for 1, o%z'z? for
1-Hg).! As a consequence, the calculated relativE® of the
crossing point',-Hg — 1' + 1'-Hg) is quite high (28 kcal/mol)
and within reason of the observeéds* of degradation.

The empty, low-lying £2.19 eV) symmetric antibonding
component (2g of the 3c4e manifold renderk-Hg susceptible
to nucleophilic attack and MeHg bond cleavage. Treatment of
[(silox),Mo=N'Bu](u-Hg) (1-Hg) with excess PMgor py af-
forded maroon (silox['BuN)MoPMg; (1-PMe;, S= 0) and dark
blue-purple (silox('BuN)Mopy. (1-py,, S = 0) within 5 min.
Poorer nucleophiles were ineffective at cleavage. With 4.8 equiv
of 2-butyne, only 59% of (silox{'BuN)Mo(MeC=CMe) (1-C,-

Me, S = 0) formed after 27 d at 28C, and 45 h at 70C was
required for complete conversion. With ethylene (5 equiv), 23%
(silox)(‘BuN)Mo(CHs) (1-CoH4, S = 0) formed after 30 h at
23 °C; after 30 h at 63C the reaction was complete. Likewise,
2.2 equiv of NO generated only 10% (silo)BuN)MoO (1=0)
after 16 h at 25C; 20 h at 60°C effected completion. 2-Butyne
and ethylene displace PM&om 1-PMe; to afford 1-C,Me, and
1-C,H,4, and hence the rates @$-Hg cleavage daot reflect the
thermodynamics.

As Figure 2 illustrates, the land 1k orbitals of 1,-Hg have
no Hg component and can be considered dimolybdenurand
sr*-orbitals that have been “stretched” beyond a meaningful overlap
distance. As others have used the relative rotation of aMo
fragment in quadruply bonded {tL),XsMo, systems to diminish
or eliminate d-overlap??°the “stretched’z-interaction inl,-Hg
can be considered similarly. The energy difference between the
1B, and ®B, states derived from the (J)&(1hy) configuration is
2K, whereK is the exchange energy atdV = E(1hy) — E(1a),
as in the paradigm provided by Cotton and Noceraay two-
electron bond The lowest energy band in the U\Wis spectrum
of 1,-Hg is a weak absorptiore (~ 160 M~* cm™%) at 1000 nm
that is assigned to thgy-allowed Ay — 1B, transition K =
4700 cn1l, AW = 2450 cnt?); intensity stealing from an Ofp
— Mo(d,nr) LMCT band may aid its observatidhAn assignment
of the relatedr? — al7*! band (528 nmg ~ 1200 M~ cm™1) in
Schrock’s [Mo(NAr)(CH'Bu)(OGsFs)]2 (4)?2 permits a crude as-
sessment of its dimolybdenumbond energy a$E(7? — alr*t
in 4) — E(*Ag — 1By in 1-Hg)} + E(*Aq — By in 1-Hg) =
9540 cn1! (27 kcal/mol)® This rare spectroscopic estimate of the
s-bond strengt¥24rests on the premise that characteristic energies
in these compounds are similar, the contribution from Hgt6p
the 7* (1a,) orbital in 1,-Hg is negligible, and configuration
interaction contributes minimally to tH8,, (1,-Hg) andzlz*! states
(4).

Calculations suggest that the model is a fundamental approxima-
tion for the dimolybdenume-bond. Using multireference perturba-
tion theory (MPT}225 on the1',-Hg model, theAE(*Aq — 1B,)
transition is calculated to be at890 nm withK = 4740 cn1?,

AW = 4425 cml, and D(n(Mo,)) = 27 kcal/mol. Given the
difficulty of calculating excited states, the values are within reason,
but more importantly, the calculations implicate substantial mixing
in 1B, (69% arising from higher energy orbitals outside the two-
orbital, two-electron Coulson and Fischepace, i.e., (13%(1hy)°).

In contrast, théA, and*B,, states are-90% “pure”. Complementary
structural, reactivity, and electronic studies baHg and various
derivatives are continuing.
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