The Butterfly Dimer [(${}^{t}Bu_{3}SiO$)Cr]₂(μ -OSi ${}^{t}Bu_{3}$)₂ and Its Oxidative Cleavage to ('Bu₃SiO)₂Cr(=N-N=CPh₂)₂ and $(^{t}Bu_{3}SiO)_{2}Cr = N(2,6-Ph_{2}-C_{6}H_{3})$ Orson L. Sydora,† David S. Kuiper,† Peter T. Wolczanski,*,† Emil B. Lobkovsky,† Adriana Dinescu, and Thomas R. Cundari Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, and Department of Chemistry, University of North Texas, Box 305070, Denton, Texas 76203-5070 Received August 30, 2005 Treatment of CrCl₂(THF)₂ with NaOSi¹Bu₃ afforded the butterfly dimer [(¹Bu₃SiO)Cr]₂(μ-OSi¹Bu₃)₂ (1₂), whose d(CrCr) of 2.658(31) Å and magnetism were indicative of strong antiferromagnetic coupling. A Boltzmann distribution of low-energy ¹A₁, ³B₁, ⁵A₁, ⁷B₁, and ⁹A₁ states obtained from calculations on [(HO)₂Cr]₂(µOH)₂ (1'₂) were used to provide a reasonable fit of the μ_{eff} vs T data. Cleavage of $\mathbf{1}_2$ with various L (L = 4-picoline, p-tolunitrile, 'BuCN, 'BuNC, Ph₂CO, and PMe₃) generated ('Bu₃SiO)₂CrL₂ (1-L₂). The dimer was oxidatively severed by Ph₂CN₂ to give ('Bu₃SiO)₂Cr(N₂CPh₂)₂ (2) and by RN₃ at 23 °C to afford (silox)₂Cr=NR (3-R) for bulky R (adamantyl (Ad), 2,6- i Pr₂-C₆H₃, 2,4,6-Me₃-C₆H₂ = Mes, 2,6-Ph₂-C₆H₃) and $(^{i}$ Bu₃SiO)₂Cr(=NR)₂ (4-R) for smaller substituents (R = 1-Naph, 2-Anth). X-ray structural studies were conducted on 12, square planar 1-(OCPh2)2, pseudo-Td 2 and pseudotrigonal 3-(2,6-Ph₂-C₆H₃), whose S=1 ground state was discussed on the basis of calculations of (H₃SiO)₂Cr= NPh (3"-Ph). # Introduction The generation of electronically and coordinatively unsaturated transition metal fragments leaves them susceptible to aggregation, but through the use of bulky ligands, lowcoordinate species can often be isolated. For example, the bulky siloxide 'Bu₃SiO' (silox) has been successfully employed to stabilize low-coordinate mononuclear complexes such as $[(silox)_3M]^n$ (n = 0, M = Ti, V, NbL) $(L = PMe_3, V, NbL)$ 4-picoline), 2 Ta; 3 n = 1-, M = Cr). 4 These compounds have been shown to be exceedingly reactive in CX bond activations,⁵ displaying chemistry as diverse as carbon monoxide and related CO bond cleavages, 3,6 other deoxygenations,2 olefin-to-alkylidene rearrangements,7 and pyridine ringopenings.^{8,9} In these systems, a severe steric price is paid in order to observe such dramatic reactivity, often limiting the chemistry to small molecules. In addition, the silox ligands can become directly involved.7,10 Another means of utilizing features of low-valent metal centers in bond activations is via the creation of metalmetal-bonded complexes that can exhibit substantial reactivity through reactions at their metal-metal bonds.11 ^{*} To whom correspondence should be addressed. E-mail: ptw2@ cornell.edu. Cornell University. University of North Texas. ⁽¹⁾ Covert, K. J.; Wolczanski, P. T.; Hill, S. A.; Krusic, P. J. Inorg. Chem. 1992, 31, 66-78. ⁽²⁾ Veige, A. S.; Slaughter, L. M.; Lobkovsky, E. B.; Wolczanski, P. T.; Matsunaga, N.; Decker, S. A.; Cundari, T. R. Inorg. Chem. 2003, 42, 6204-6224. ⁽³⁾ Neithamer, D. R.; LaPointe, R. E.; Wheeler, R. A.; Richeson, D. S.; Van Duyne, G. D.; Wolczanski, P. T. J. Am. Chem. Soc. 1989, 111, 9056-9072 ⁽⁴⁾ Sydora, O. L.; Wolczanski, P. T.; Lobkovsky, E. B.; Buda, C.; Cundari, T. R. Inorg. Chem. 2005, 44, 2606-2618. ⁽⁵⁾ Wolczanski, P. T. Polyhedron 1995, 22, 3335-3362. ^{(6) (}a) Covert, K. J.; Mayol, A.-R.; Wolczanski, P. T. Inorg. Chim. Acta. 1997, 263, 263-278. (b) Veige, A. S.; Kleckley, T. S.; Chamberlin, R. L. M.; Neithamer, D. R.; Lee, C. E.; Wolczanski, P. T.; Lobkovsky, E. B.; Glassey, W. V., J. Organomet. Chem. 1999, 591, 194-203. ^{(7) (}a) Hirsekorn, K. F.; Veige, A. S.; Marshak, M. P.; Koldobskaya, Y.; Wolczanski, P. T.; Cundari, T. R.; Lobkovsky, E. B. J. Am. Chem. Soc. 2005, 127, 4809-4830. (b) Veige, A. S.; Wolczanski, P. T.; Lobkovsky, E. B., Angew. Chem., Int. Ed. 2001, 40, 3629-3632. ⁽⁸⁾ Kleckley, T. S.; Bennett, J. L.; Wolczanski, P. T.; Lobkovsky, E. B. J. Am. Chem. Soc. 1997, 119, 247–248. ⁽⁹⁾ Bonanno, J. B.; Henry, T. P.; Neithamer, D. R.; Wolczanski, P. T.; Lobkovsky, E. B. J. Am. Chem. Soc. 1996, 118, 5132-5133. ⁽¹⁰⁾ Bonanno, J. B.; Veige, A. S.; Wolczanski, P. T.; Lobkovsky, E. B. Inorg. Chim. Acta 2003, 345, 173-184. ⁽¹¹⁾ Cotton, F. A.; Walton, R. A. Multiple Bonds Between Metal Atoms; Oxford University Press: New York, 1993. **Table 1.** Crystallographic Data for $[('Bu_3SiO)Cr]_2(\mu$ -OSi'Bu₃)₂ (1₂), trans- $(silox)_2Cr(O=CPh_2)_2$ (1- $(OCPh_2)_2$), $(silox)_2Cr(=N-N=CPh_2)_2$ (2), and $(silox)_2Cr=N(2,6-Ph_2-C_6H_3)$ (3- $(2,6-Ph_2-C_6H_3)$) | | 1_2 | $1-(OCPh_2)_2$ | 2 | 3-(2,6-Ph ₂ -C ₆ H ₃) | |---|---|---|--|--| | formula | C ₁₀₆ H ₂₄₀ O ₈ Si ₈ Cr ₄ ^a | C ₂₅ H ₃₇ O ₂ SiCr _{0.5} ^b | C ₅₅ H ₈₆ N ₄ O ₂ Si ₂ Cr | C ₄₂ H ₆₇ O ₂ NSi ₂ Cr | | fw | 2075.76 | 423.67 | 943.50 | 726.17 | | space group | $Pna2_1$ | C2 | Pc | $P2_{1}2_{1}2_{1}$ | | \tilde{Z} | 4 | 4 | 2 | 4 | | a, Å | 24.524(5) | 24.474(3) | 12.7050(17) | 13.0755(6) | | b, Å | 23.142(5) | 9.4762(13) | 18.890(3) | 15.5264(6) | | c, Å | 22.978(5) | 11.7561(13) | 13.1447(18) | 21.3870(11) | | α, deg | 90 | 90 | 90 | 90 | | β , deg | 90 | 113.785(13) | 116.852(3) | 90 | | γ, deg | 90 | 90 | 90 | 90 | | V , \mathring{A}^3 | 13041(5) | 2495.0(5) | 2814.6(7) | 4341.9(3) | | $\rho_{\rm calc}, {\rm g} \cdot {\rm cm}^{-3}$ | 1.057 | 1.128 | 1.113 | 1.111 | | μ , mm ⁻¹ | 0.443 | 0.317 | 0.286 | 0.351 | | temp, K | 173(2) | 173(2) | 173(2) | 173(2) | | λ (Å) | 0.71073 | 0.71073 | 0.71073 | 0.71073 | | $R \text{ ind } [I > 2\sigma(I)]^{c,d}$ | R1 = 0.0654 | R1 = 0.0632 | R1 = 0.0449 | R1 = 0.0413 | | | wR2 = 0.1467 | wR2 = 0.1664 | wR2 = 0.0906 | wR2 = 0.1071 | | R ind (all data) c,d | R1 = 0.1201 | R1 = 0.0767 | R1 = 0.0660 | R1 = 0.0565 | | , / | wR2 = 0.1803 | wR2 = 0.1771 | wR2 = 0.0989 | wR2 = 0.1153 | | GOF^e | 1.014 | 1.244 | 0.979 | 0.960 | ^a The asymmetric unit (formula) contains two molecules. ^b The asymmetric unit (formula) contains one-half of a molecule. ^c R1 = $\Sigma ||F_o|| - |F_c||/|F_o|$. ^d wR2 = $[\Sigma w(|F_o| - |F_c|)^2/\Sigma wF_o^2]^{1/2}$. ^e GOF (all data) = $[\Sigma w(|F_o| - |F_c|)^2/(n-p)]^{1/2}$, n=1 number of independent reflections, p=1 number of parameters. The chemistry of group 6 triple-bonded complexes, $X_{3-n}Y_nMMX_{3-n}Y_n$, is dominated by direct involvement of the electron density comprising the M≡M unit, and encompasses a host of bond activations. 11,12 When $(silox)_n X_m M$ fragments form metal-metal multiple bonds, the resulting dimers can be remarkably inert (cf. (silox)2ORe≡ReO-(silox)₂),¹³ or they can display intriguing small-molecule chemistry (e.g., $(silox)_2(CO)ClW \equiv WCl(CO)(silox)_2 \rightarrow$ (silox)₂OW=C=WCl₂(silox)₂ + CO).¹⁴ A previous report on the generation of "(silox)CrCl" revealed its aggregation to the chromous "box", $[(\mu\text{-Cl})Cr(\mu\text{-OSi}^tBu_3)]_4$, and cleavage to afford (silox)₃Cr⁻, among other species.⁴ Reported herein is the chemistry of an unusual first-row dichromium complex, [(^tBu₃SiO)Cr]₂(μ-OSi^tBu₃)₂, which reacts somewhat differently, because it can be simply rationalized as a source of "(silox)₂Cr". ### **Results and Discussion** [(${}^{t}Bu_{3}SiO$)Cr]₂(μ -OSi ${}^{t}Bu_{3}$)₂ (1₂). 1. Synthesis. Treatment of CrCl₂(THF)₂ with ~1.5 equiv of NaOSi ${}^{t}Bu_{3}$ in THF for 10 h afforded a green solid that was heated at 70 °C to remove residual solvent. Crystallization from pentane at -78 °C provided green blocks of [(${}^{t}Bu_{3}SiO$)Cr]₂(μ -OSi ${}^{t}Bu_{3}$)₂ (1₂) in 74% yield (eq 1). The use of less than a stoichiometric amount of sodium siloxide was necessary to avoid $$CrCl2(THF)2 + 2NaOSitBu3 \xrightarrow{THF, 10 \text{ h}, 23 \text{ °C}}$$ $$[(^{t}Bu_{3}SiO)Cr]_{2}(\mu\text{-OSi}^{t}Bu_{3})_{2} + 2NaCl (1)$$ $$1_{2}$$ formation of [(silox)₃Cr]Na(THF)_n,⁴ which interfered with the isolation of dimeric $\mathbf{1}_2$. Two structures were considered for $\mathbf{1}_2$: a D_{2d} quadruple-bonded [('Bu₃SiO)₂Cr]₂ conformer,¹⁵ and one possessing two bridging siloxides and two terminal siloxides. The ¹H NMR spectrum of $\mathbf{1}_2$ was relatively uninformative (δ 1.71, $\nu_{1/2} \approx 210$ Hz); thus, an X-ray structural examination of the dimer ensued. 2. Molecular Structure. Details of the data collection and refinement pertaining to $\mathbf{1}_2$ are summarized in Table 1, and selected interatomic distances and angles are given in Table 2. The asymmetric unit contained two independent isostructural chromous dimers, each possessing two bridging and two terminal silox groups. Subtly different chromiumchromium distances of 2.6365(15) (Cr1-Cr2) and 2.6800-(15) Å (Cr1'-Cr2') prompted careful scrutiny of the structure solution to see if a centrosymmetric space group (e.g., *Pnma*) was more appropriate, but refinement in $Pna2_1$ proved best. Several crystals were tried in an attempt to provide better data, but none successfully refined better, and the space group was consistent. It is conceivable that weakly antiferromagnetically coupled chromous centers could be subject to minor distance deviations as a function of external (e.g., packing) forces; nonetheless, the distances are approximately equal and, while out of the realm of multiple-bonding interactions, 11 are plausible for a weak single bond ($r_{cov}(Cr) = 1.18 \text{ Å}$). $\mathbf{1}_2$ may also be described as a butterfly dimer containing pseudo-trigonal chromous centers connected by the bridging siloxides, as Figure 1 reveals. The planes defined by the
Cr- ^{(12) (}a) Chisholm, M. H. J. Chem. Soc., Dalton Trans. 1996, 1781–1791. (b) Chisholm, M. H. J. Organomet. Chem. 1990, 400, 235–253. (c) Chisholm, M. H. Acc. Chem. Res. 1990, 23, 419–425. (d) Buhro, W. E.; Chisholm, M. H. Adv. Organomet. Chem. 1987, 27, 311–369. (e) Chisholm, M. H.; Conroy, B. K.; Eichhorn, B. W.; Folting, K.; Hoffman, D. M.; Huffman, J. C.; Marchant, N. S. Polyhedron 1987, 6, 783–792. (f) Chisholm, M. H.; Hoffman, D. M.; Huffman, J. C. Chem. Soc. Rev. 1985, 14, 69–91. ⁽¹³⁾ Douthwaite, R. E.; Wolczanski, P. T.; Merschrod, E. J. Chem. Soc. Chem. Commun. 1998, 2591–2592. ^{(14) (}a) Miller, R. L.; Wolczanski, P. T.; Rheingold, A. L. J. Am. Chem. Soc. 1993, 115, 10422–10423. (b) Miller, R. L.; Lawler, K. A.; Bennett, J. L.; Wolczanski, P. T. Inorg. Chem. 1996, 35, 3242–3253. ⁽¹⁵⁾ Chamberlin, R. L. M.; Rosenfeld, D. C.; Wolczanski, P. T.; Lobkovsky, E. B. Organometallics 2002, 21, 2724–2735. Table 2. Selected Interatomic Distances (Å) and Angles (deg) for [('Bu₃SiO)Cr]₂(\(\mu\)-OSi'Bu₃)₂ (1₂) | | | | * | | | |-----------------------|------------|---------------|------------|-----------------------|-----------| | Cr1-O1 | 1.835(4) | Cr1-O3 | 2.006(4) | Cr1-O4 | 1.996(4) | | Cr2-O2 | 1.870(4) | Cr2-O3 | 1.991(4) | Cr2-O4 | 1.980(4) | | Cr1'-O1' | 1.845(5) | Cr1'-O3' | 2.013(4) | Cr1'-O4' | 1.995(4) | | Cr2′-O2′ | 1.870(4) | Cr2'-O3' | 2.004(4) | Cr2′-O4′ | 1.984(4) | | Si1-O1 | 1.640(5) | Si2-O2 | 1.629(5) | Si3-O3 | 1.670(4) | | Si4-O4 | 1.670(4) | Si1'-O1' | 1.626(5) | Si2'-O2' | 1.637(5) | | Si3'-O3' | 1.663(4) | Si4'-O4' | 1.677(4) | Si-C(ave) | 1.929(13) | | Cr1-Cr2 | 2.6365(15) | Cr1'-Cr2' | 2.6800(15) | C-C(ave) | 1.53(4) | | O1-Cr1-O3 | 138.2(2) | O1-Cr1-O4 | 137.2(2) | O3-Cr1-O4 | 82.7(2) | | O2-Cr2-O3 | 140.9(2) | O2-Cr2-O4 | 134.3(2) | O3-Cr2-O4 | 83.6(2) | | O1'-Cr1'-O4' | 137.4(2) | O1'-Cr1'-O3' | 138.5(2) | O3'-Cr1'-O4' | 82.6(2) | | O2'-Cr2'-O3' | 140.3(2) | O2'-Cr2'-Cr4' | 135.3(2) | O3'-Cr2'-O4' | 83.1(2) | | Cr2-Cr1-O1 | 142.70(15) | Cr2-Cr1-O3 | 48.48(11) | Cr2-Cr1-O4 | 48.19(13) | | Cr1-Cr2-O2 | 143.74(14) | Cr1-Cr2-O3 | 48.98(11) | Cr1-Cr2-O4 | 48.74(11) | | Cr2'-Cr1'-O1' | 144.51(16) | Cr2'-Cr1'-O3' | 48.00(11) | Cr2'-Cr1'-O4' | 47.50(13) | | Cr1'-Cr2'-O2' | 144.83(14) | Cr1'-Cr2'-O3' | 48.30(11) | Cr1'-Cr2'-O4' | 48.74(11) | | Cr1-O3-Cr2 | 82.54(14) | Cr1-O4-Cr2 | 83.07(16) | O-Si-C _{ave} | 107.2(8) | | Cr1'-O3'-Cr2' | 83.69(15) | Cr1'-O4'-Cr2' | 84.66(16) | C-Si-C _{ave} | 111.6(8) | | Cr1-O1-Si1 | 165.0(3) | Cr1-O3-Si3 | 137.0(2) | Cr1-O4-Si4 | 139.3(3) | | Cr2-O2-Si2 | 167.1(3) | Cr2-O3-Si3 | 140.2(2) | Cr2-O4-Si4 | 137.3(2) | | Cr1'-O1'-Si1' | 169.8(3) | Cr1'-O3'-Si3' | 138.8(2) | Cr1'-O4'-Si4' | 135.9(3) | | Cr2′-O2′-Si2′ | 163.2(3) | Cr2'-O3'-Si3' | 137.5(2) | Cr2'-O4'-Si4' | 139.2(2) | | Si-C-C _{ave} | 111.9(23) | $C-C-C_{ave}$ | 106.8(25) | | | | | | | | | | $(O_b)_2$ linkages intersect at roughly 126°. As expected, the average terminal Cr-O bond distances (1.855(18) Å) are **Figure 1.** Molecular view (blue = Cr, red = O, teal = Si, and black = C) of $[(silox)_2Cr]$ (1₂): (a) from the top; (b) from the side. significantly shorter than the average Cr-O bond length (1.996(11) Å) ascribed to the bridging siloxides. The terminal siloxides exhibited nearly linear Cr-O-Si bond angles (166.3(28)° ave) in contrast to the substantially bent versions of the bridges (138.2(14)° ave). Each chromous center is severely distorted toward a Y-shape with the O_b-Cr-O_b angles acute (83.0(5)° ave). The remaining O_t-Cr-O_b angles are essentially equivalent at one chromium (Cr1, Cr1'; 137.8-(6)° ave)), yet moderately disparate at the other (Cr2, 134.3-(2)°, 140.9(2)°; Cr2′, 135.3(2)°, 140.3(2)°), while the coordination geometry remains roughly planar ($\Sigma(\angle OCrO)$) = 358.5(3)° ave). The Y-shaped conformation is reminiscent of [(tBu₃SiO)Cr(μ-OSitBu₃)₂]Na•C₆H₆, which possesses a (μ-O)₂Cr angle of 91.28(7)°, and corresponding O_t-Cr-(μ -O) angles of 130.95(7)° and 136.17(7)°. Its bond distances are significantly longer than those of $\mathbf{1}_2$ ($(d(Cr-O_t) = 1.8906$ -(16) Å; $d(Cr-(\mu-O)) = 1.9580(16)$ and 1.9719(14) Å), presumably because it is anionic. **3. Magnetism.** The d(Cr-Cr) in $\mathbf{1}_2$ and its deviation from pseudo- D_{2h} , i.e., planar, symmetry are clearly indicative of metal—metal bonding, but to what degree is this interaction a bond, and to what extent is antiferromagnetic coupling the means by which spins pair? At room temperature, the μ_{eff} for $\mathbf{1}_2$ was measured by Evans' method¹⁶ to be 2.8 μ_{B} , a value suggestive of a triplet ground state and a triple bond or an antiferromagnetically coupled system.¹⁷ Variable-temperature magnetic susceptibility data (SQUID) revealed antiferromagnetic behavior, as illustrated by Figure 2. A relatively smooth decline in $\mu_{\rm eff}$ vs T is evident, but there is a slight hump in the data at roughly 150 K. Lower than 100 K, there is a perceptible flattening of $\mu_{\rm eff}$, then a precipitous drop just before 0 K, although the system does not approach S=0, remaining roughly $\mu_{\rm eff}\approx 1.1~\mu_{\rm B}$. While the system does exhibit antiferromagnetic behavior, it is difficult to interpret the low-temperature data, especially since ^{(16) (}a) Evans, D. F. J. Chem. Soc. 1959, 2003–2005. (b) Orrell, K. G.; Sik, V. Anal. Chem. 1980, 52, 567–569. (c) Schubert, E. M. J. Chem. Ed. 1992, 69, 62. ⁽¹⁷⁾ Carlin, R. L. Magnetochemistry; Springer-Verlag: Berlin, 1980. **Figure 2.** Magnetism of [('Bu₃SiO)Cr]₂(μ -OSi'Bu₃)₂ (1₂): (a) experimental $\mu_{\rm eff}$ vs T plot for 1₂ (two samples), and (b) calculated $\mu_{\rm eff}$ vs T plot for [(HO)Cr]₂(μ -OH)₂ (1'₂) based on a Boltzmann distribution of the ¹A₁, ³B₁, ⁵A₁, ⁷B₁, and ⁹A₁ states as discussed (solid and empty diamonds represent single shell MCSCF and MRMP2 calculations, respectively). $\mathbf{1}_2$ is exceedingly air sensitive and small amounts of impurities can dominate the magnetism of this region. In previous runs, the >150 K data were analyzed with a dimeric Heisenberg model of $S=2^{18}$ that yielded a coupling constant of $J=-200~\mathrm{cm}^{-1}$, but fits to the low-temperature data were less than satisfactory. Noting that $\mathbf{1}_2$ might have multiple open-shell states of consequence, a theoretical treatment of $\mathbf{1}_2$ was utilized in assessing the T-dependence of the magnetism (vida infra). A comparison of $\mathbf{1}_2$ with other double-bridged dinuclear chromous species revealed a correlation between the room temperature $\mu_{\rm eff}$ and the interatomic Cr···Cr separation, as Table 3 indicates. ^{19–22} Significant through-space spin cou- **Figure 3.** The eight lowest-energy MOs derived from the Cr d orbitals of $[(HO)Cr]_2(\mu\text{-OH})_2$ ($\mathbf{1'}_2$) shown are filled with eight d electrons from the two chromous ions to comprise a single shell active space. pling through direct d-orbital overlap between the chromous centers is likely to be the most important mechanism for antiferromagnetic coupling, hence the decline as d(Cr-Cr) increases. 4. Calculations. Ab initio quantum calculations were applied to $[(HO)_2Cr]_2(\mu$ -OH)₂ (1'₂) using the crystallographic coordinates of one $\mathbf{1}_2$ dimer (d(CrCr) = 2.68 Å) that was slightly modified to yield C_{2v} symmetry. Preliminary singlepoint energy calculations were applied at MCSCF/Basis Set I level of theory for all plausible spin multiplicities (1, 3, 5, 7, and 9) and active spaces symmetries $(A_1, A_2, B_1, \text{ and } B_2)$. The active space included the eight lowest-energy MOs derived from the Cr d orbitals and the eight d electrons from the two chromous ions (i.e., a single shell active space), as illustrated in Figure 3. As Table 4 indicates, the predicted low-energy states were ¹A₁, ³B₁, ⁵A₁, ⁷B₁, and ⁹A₁; the next lowest state was 57 kcal/mol higher. As a consequence, only these five low-lying states were used in the subsequent calculations: MCSCF/Basis Set II and MRMP2/Basis Set I(II) for the single-shell active space, and MCSCF/Basis Set I for the double-shell active space. The double-shell active space incorporated the single-shell active space and the next eight lowest-energy MOs that subtended the same irreducible representations as the eight MOs in the single-shell active space. The calculations showed that the method (MCSCF vs MRMP2) is more important than the basis set selection (Basis Set I vs Basis Set II) with respect to the state energy splitting. All methods indicate that the singlet gives the most stable state, and that the relative energies increase slightly with spin multiplicity. Assuming a Boltzmann distribution for the various low-energy multiplets, the calculations at the various levels of theory indicate that the ground-state electronic structure is on average $58\%~^1A_1$, $31\%~^3B_1$, and $9\%~^5A_1$ with smaller amounts of the 7B_1 and 9A_1 states. Including the spin degeneracy, the calculated Boltzmann distribution reveals that ⁽¹⁸⁾ O'Connor, C. J. Prog. Inorg. Chem. 1982, 29, 203-283. ⁽¹⁹⁾ Fryzuk, M. D.; Leznoff, D. B.; Rettig, S. J.; Thompson, R. C. Inorg. Chem. 1994, 33, 5528-5534. ⁽²⁰⁾ Chisholm, M. H.; Cotton, F. A.; Extine, M. W.; Rideout, D. C. *Inorg. Chem.* 1979, 18, 120–125. ⁽²¹⁾ Edema, J. J. H.; Gambarotta, S.; Meetsma, A.; Spek, A. L.; Smeets, W. J. J.; Chiang, M. Y. J. Chem. Soc., Dalton. Trans. 1993, 789–797. ⁽²²⁾ Edema, J. J. H.; Gambarotta, S.; Spek, A. L. Inorg. Chem. 1989, 28, 812–813. **Table 3.** Comparison of Interatomic $d(Cr \cdot \cdot \cdot Cr)$ (Å) and μ_{Eff} (μ_B at 298 K) for Various Cr(II) Dimers | compound | $d(\operatorname{Cr} \cdots \operatorname{Cr})$ | $\mu_{ ext{eff}}$ | ref | |--|---|-------------------|-----------| | $\{[(Ph_2PCH_2SiMe_2)_2N]Cr\}_2(\mu-H)_2$ | 2.64 | 2.1 | 19 | | $[CpCr(\mu-O'Bu)]_2$ |
2.65 | 2.6 | 20 | | $[('Bu3SiO)Cr]2(\mu-OSi'Bu3)2(12)$ | 2.64, 2.68 | 2.8 | this work | | $[(Cy_2N)Cr]_2(\mu-NCy_2)_2$ | 2.84 | 2.6 | 21 | | $\{[(Ad)(3.5-Me_2C_6H_3)N]_2Cr\}_2(\mu-N(Ad)(3,5-Me_2C_6H_3))_2$ | 2.85 | 2.5 | 21 | | $[({}^{i}Pr_{2}N)Cr]_{2}(\mu-N{}^{i}Pr_{2})_{2}$ | 2.87 | 2.3 | 22 | | $[(thf)(Ph_2N)Cr]_2(\mu-NPh_2)_2$ | 3.15 | 3.6 | 21 | | $\{[(Ph_2PCH_2SiMe_2)_2N]Cr\}_2(\mu-Cl)_2$ | 3.64 | 6.5 | 19 | **Table 4.** Calculated Relative Energies (kcal/mol) of $[(HO)Cr]_2(\mu$ -OH)₂ (1'₂), a Model for ('Bu₃SiO)Cr]₂(μ -OSi'Bu₃)₂ (1₂), in Different Spin States with the Calculated Magnetic Moment | | | SCF
e shell) | MCSCF (double shell) | | MP2
e shell) | |---|----------------|-----------------|----------------------|----------------|-----------------| | electronic state | basis
set I | basis
set II | basis
set I | basis
set I | basis
set II | | ¹ A ₁ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | ${}^{3}B_{1}$ | 0.29 | 0.29 | 0.35 | 0.44 | 0.44 | | ${}^{5}A_{1}$ | 0.87 | 0.85 | 1.07 | 1.32 | 1.32 | | $^{7}\mathrm{B}_{1}$ | 1.73 | 1.68 | 2.13 | 2.68 | 2.63 | | ${}^{9}A_{1}$ | 2.84 | 2.76 | 3.56 | 4.58 | 4.48 | | μ_{eff} (in μ_{B}) | 3.1 | 3.2 | 2.8 | 2.4 | 2.4 | **Table 5.** Active Space MOs Electronic Occupation for $[(HO)Cr]_2(\mu-OH)_2$ (1'2), a Model for $[('Bu_3SiO)Cr]_2(\mu-OSi'Bu_3)_2$ (1₂), Calculated with MCSCF Basis Set I | | numl | number of doubly occupied molecular orbitals | | | | | | |-----------------------------|------|--|-----|------|------|--|--| | electronic state | 4 | 3 | 2 | 1 | 0 | | | | ¹ A ₁ | 27% | 9% | 53% | 1% | 4% | | | | $^{3}\mathrm{B}_{1}$ | _ | 52% | 14% | 23% | _ | | | | ${}^{5}A_{1}$ | _ | _ | 85% | 4% | 9% | | | | $^{7}\mathrm{B}_{1}$ | _ | _ | _ | 100% | _ | | | | ${}^{9}A_{1}$ | _ | _ | _ | _ | 100% | | | the major contribution to magnetic moment is from the triplet and quintet states in a roughly 2:1 ratio: 28% for $^{1}A_{1}$, 44% for $^{3}B_{1}$, 22% for $^{5}A_{1}$, 5% for $^{7}B_{1}$, and 1% for $^{9}A_{1}$. It is reassuring to note that the double-shell MCSCF (Basis Set I) calculation reproduces the room-temperature moment ($\mu_{\rm eff}$ = 2.8 $\mu_{\rm B}$) as observed experimentally and that all methods provided reasonable calculated values for $\mu_{\rm eff}$ (2.4–3.2 $\mu_{\rm B}$), as Table 4 indicates. Since the $\mu_{\rm eff}$ vs T measurement of ${\bf 1}_2$ was conducted, the Boltzmann distribution of states was calculated as a function of temperature, and the resulting average $\mu_{\rm eff}$ vs T plot is given in Figure 2b. The calculations manifest a roughly similar profile of antiferromagnetism from 300 to 150 K, but the $^1{\bf A}_1$ state is basically the only one occupied at T < 20 K. The calculations, which were done at the single-shell level for expediency, suggest that the description of the antiferromagnetic coupling in ${\bf 1}_2$ is inappropriately described by a single J and that the observed moment of $\sim 1.1~\mu_{\rm B}$ at 0 K may indeed be due to impurities. The natural orbital population shows different occupations for the active space MOs, as indicated in Table 5. This variety of electron configurations is possible because the d orbitals of Cr atoms are densely packed in $\mathbf{1'}_2$. Interestingly, the orbital occupancy for the 1A_1 , 3B_1 , and 5A_1 states suggests a significant antiferromagnetic arrangement of the two chromium d electrons, consistent with the observed magnetism. [(tBu_3SiO)Cr]₂(μ -OSi tBu_3)₂ Cleavage by L. 1. (tBu_3SiO)₂-CrL₂ (1-L₂). The Cr(II) dimer 1₂ proved to be susceptible to cleavage. Treatment of 1₂ with various L (L = 4-picoline, 4 p-tolunitrile, tBuCN , tBuNC , tBu_3CO , and tPMe_3) afforded (tBu_3SiO)₂CrL₂ (1-L₂) compounds, even with less than a stoichiometric amount. To cleanly form 1-L₂ from 1₂, typically 4 equiv of the donor were used in pentane solvent, as indicated in eq 2. Yellow crystalline trans-(tBu_3SiO)₂Cr-(NCC_6H_4 -p-Me) (1-(NCtol)₂) $$[({}^{t}Bu_{3}SiO)Cr]_{2}(\mu-OSi{}^{t}Bu_{3})_{2} + 4L \xrightarrow{23 \, {}^{\circ}C} \xrightarrow{\text{pentane}}$$ $$2({}^{t}Bu_{3}SiO)_{2}CrL_{2}$$ $$1-L_{2}, L = 4-\text{pic (>90\%, NMR)}, \\ NCC_{6}H_{4}\text{-p-Me (93\%)}, \\ NCC_{6}H_{4}\text{-p-Me (93\%)}, \\ Ph_{5}CO (66\%), PMe_{5}$$ $$(2)$$ was assigned a D_{2h} structure on the basis of a single IR absorption at 2258 cm⁻¹ corresponding to $\nu(\text{CN})$ and ^{1}H NMR resonances consistent with equivalent silox and p-tolunitrile ligands. Its magnetic moment at room temperature was 4.8 μ_{B} , consistent with a chromous center. Pink *trans*-($^{1}\text{Bu}_{3}\text{SiO})_{2}\text{Cr}(\text{NC}^{1}\text{Bu})_{2}$ (1-($\text{NC}^{1}\text{Bu})_{2}$), which was only prepared on a small scale, showed related spectral characteristics, including a 2272 cm⁻¹ band in its IR spectrum and ^{1}H NMR resonances at δ 3.04 ($\nu_{1/2} \approx 670$ Hz) and δ 5.73 ($\nu_{1/2} \approx 230$ Hz) that occur with a 3:1 intensity ratio. Orange (^tBu₃SiO)₂Cr(CN^tBu)₂ (1-(CN^tBu)₂) exhibited one broad resonance in the ¹H NMR at δ 3.17 ($\nu_{1/2} \approx 700$ Hz), but an upfield shoulder was apparent with an estimated intensity consistent with the expected 3:1 ratio. Both Nujol mull and solution IR spectra revealed a $\nu(CN)$ absorption at 2192 cm⁻¹ with a minor band at 2099 cm⁻¹. Since ^tBuNC is a strong σ -donor and π -acceptor and possesses a correspondingly strong trans-influence, a cis-square planar geometry is conceivable, but steric influences clearly favor a trans arrangement; perhaps a mixture of these isomers is evident. Alternately, the strong σ -donating capability of ^tBuNC could also lead to a distortion from square planar geometry that would produce IR-active symmetric and antisymmetric stretches. Recrystallizations did not appear to change the IR; hence, minor impurities seem less likely but cannot be ruled out. The room-temperature magnetic moment of 1-(CN^tBu)₂ is 4.8 μ _B, consistent with a high-spin Cr(II) The intense blue color of ('Bu₃SiO)₂Cr(PMe₃)₂ (1-(PMe₃)₂) was distinct from the other derivatives, including the previously prepared, lime-green trans-(${}^{1}Bu_{3}SiO)_{2}Cr(NC_{5}H_{4-p}-Me)$) (1-(4-pic)₂).⁴ The ${}^{1}H$ NMR spectra showed two resonances corresponding to silox groups (δ 1.23, $\nu_{1/2} \approx 680$ Hz) and coordinated PMe₃ (δ 17.79, $\nu_{1/2} \approx 900$ Hz) consistent with C_{2} symmetry. The deep blue color may be caused by a tetrahedral distortion from square planar geometry imposed by steric interactions between the bulky silox and PMe₃ groups. Unfortunately, attempts to crystallize (${}^{1}Bu_{3}SiO)_{2}Cr(PMe_{3})_{2}$ failed, and only blue oils were obtained. Red-purple *trans*-('Bu₃SiO)₂Cr(OCPh₂)₂ (1-(OCPh₂)₂) possessed a ν (CO) at 1625 cm⁻¹ with a slight shoulder at 1620 cm⁻¹, but the ¹H NMR spectrum was severely broadened and no discrete aryl protons could be assigned. It was possible the chromous fragment ('Bu₃SiO)₂Cr (1) could reductively couple benzophenone to yield a pinacolate, ²³ but the room-temperature magnetic moment of 4.8 μ B supported the chromous formulation. Heating 1-(OCPh₂)₂ in C₆D₆ at 100 °C for over a week did not result in reductive coupling chemistry. While it is conceivable that an inability to access the cis geometry necessary for benzophenone coupling is a problem, the lability of Cr(II) species, and subsequent studies, clearly suggest reductive coupling is kinetically feasible but not thermodynamically viable. The chromous dimer $\mathbf{1}_2$ and the cleavage derivatives proved to be quite air sensitive, and attempts to assay crystalline samples of $\mathbf{1}_2$ and ('Bu₃SiO)₂CrL₂ (1-L₂; L = p-tolunitrile, 'BuNC, and Ph₂CO) via elemental analysis proved less than satisfactory. While ample precedent exists for square planar Cr(II) species of this type, ^{4,24–26} it was still disconcerting to generate elemental analyses (EAs) consistently low in carbon; hence, a structural study of 1-(OCPh₂)₂ was obtained. 2. Structure of 1-(OCPh₂)₂. The X-ray crystal structure determination of 1-(OCPh₂)₂ confirmed its trans square planar geometry, as shown in Figure 4. Crystal and refinement data are given in Table 1, while Table 6 lists pertinent bond distances and angles. A crystallographically imposed C_2 axis runs through the Cr atom normal to the CrO₄ plane, which has insignificant deviations from a true square planar geometry, as indicated by O1-Cr1-O1' (benzophenone) and O2-Cr1-O2' (silox) angles of 177.0(2)° and 179.8(3)°, respectively. The d(Cr-O(silox)) distance of 1.926(3) Å is consistent with siloxide binding to a high-spin Cr(II) center, as is the d(Cr-O(benzophenone)) dative bond length of 2.071(3) Å. For comparison, the chromium aryloxide distances in (2,6-^tBu₂-4-MeC₆H₂O)₂Cr(THF)₂ are 1.948(2) Å, while its dative d(Cr-O(THF)) is 2.097(2) Å.²⁵ The silox groups bend slightly above the CrO₄ plane (∠Cr1−O2−Si2 = 166.9(3)°) while the benzophenones reciprocally bend below it $(\angle Cr1 - O1 - C3 = 139.8(3)^{\circ})$. Figure 4. Molecular views of trans-('Bu₃SiO)₂Cr(OCPh₂)₂ (1-(OCPh₂)₂). (${}^4Bu_3SiO)_2Cr(N_2CPh_2)_2$ (2). 1. Synthesis. Given the observed cleavage chemistry, $\mathbf{1}_2$ appeared to be a ready source of Cr(II). With the possibility of generating a Cr(IV) alkylidene in mind, $\mathbf{1}_2$ was treated with diphenyldiazomethane in pentane, ${}^{27-29}$ resulting in the immediate formation of a dark brown solution from which crystals of (${}^4Bu_3SiO)_2Cr(N_2CPh_2)_2$ (2) were isolated in 50% yield according to eq 3. The 4H and ${}^{13}C\{{}^1H\}$ NMR spectra of diamagnetic 2 revealed one [($${}^{t}Bu_{3}SiO$$)Cr]₂(μ -OSi ${}^{t}Bu_{3}$)₂ + 4N₂CPh₂ $\xrightarrow{23 \, {}^{\circ}C}$ $\xrightarrow{pentane}$ 1₂ 2(${}^{t}Bu_{3}SiO$)₂Cr(
$=$ N-N=CPh₂)₂ (3) type of silox ligand and one set of aryl resonances consistent with a $C_{2\nu}$ bis-diphenylmethylidenehydrazido complex. This unusual $4e^-$ oxidation to Cr(VI) prompted verification of the structure by X-ray methods. While **2** is stable for weeks at -30 °C, it degrades rapidly at 23 °C in benzene- d_6 ($t_{1/2} \approx$ ⁽²³⁾ McMurry, J. E. Chem. Rev. 1989, 89, 1513-1524. ⁽²⁴⁾ Terry, K. W.; Gantzel, P. K.; Tilley, T. D. *Inorg. Chem.* **1993**, *32*, 5402–5404 ⁽²⁵⁾ Edema, J. J. H.; Gambarotta, S. van Bolhuis, F.; Smeets, W. J. J.; Spek, A. L. *Inorg. Chem.* 1989, 28, 1407–1410. ⁽²⁶⁾ Edema, J. J. H.; Gambarotta, S.; van Bolhuis, F. Spek, A. L. J. Am. Chem. Soc. 1989, 111, 2142–2147. ⁽²⁷⁾ Herrmann, W. A. Angew. Chem., Int. Ed. Engl. 1978, 17, 800-812. ⁽²⁸⁾ Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18–29. (29) Dartiguenave, M.; Menu, M. J.; Deydier, E.; Dartiguenave, Y.; Siebald, H. Coord. Chem. Rev. 1998, 178–180, 623–663. Table 6. Selected Interatomic Distances (Å) and Angles (deg) in trans-('Bu₃SiO)₂Cr(OCPh₂)₂ (1-(OCPh₂)₂) | Cr1-O1 | 2.071(3) | Cr1-O2 | 1.926(3) | Si2-O2 | 1.596(3) | |-----------------------------|-----------|-----------------------|----------|-----------------|-----------| | O1-C3 | 1.245(6) | C3-C4 | 1.479 | C3-C9 | 1.481(6) | | $Si-C_{ave}$ | 1.934(6) | $C-C(silox)_{ave}$ | 1.52(2) | $C-C(Ph)_{ave}$ | 1.388(15) | | O1-Cr1-O2 | 87.31(12) | O1-Cr1-O1' | 177.0(2) | O1-Cr1-O2' | 92.68(12) | | O2-Cr-O2' | 179.8(3) | Cr1-O2-Si2 | 166.9(3) | Cr1-O1-C3 | 139.8(3) | | O1-C3-C4 | 119.3(4) | O1-C3-C9 | 199.9(4) | $C3-C-C_{ave}$ | 120.2(6) | | O-Si-Cave | 108.5(10) | C-Si-C _{ave} | 110.4(6) | $Si-C-C_{ave}$ | 112.2(32) | | C-C-C(silox) _{ave} | 106.5(19) | $C-C-C(Ph)_{ave}$ | 120.0(6) | | | | | | | | | | **Table 7.** Selected Interatomic Distances (Å) and Angles (deg) in ('Bu₃SiO)₂Cr(N₂CPh₂)₂ (2) | | | 0 (0) (- /- | / / | | | |---------------------------|------------|-----------------|------------|-----------------------|------------| | Cr1-O1 | 1.803(2) | Cr1-O2 | 1.802(2) | Cr1-N1 | 1.664(3) | | Cr1-N3 | 1.666(2) | Si1-O1 | 1.644(2) | Si2-O2 | 1.644(2) | | N1-N2 | 1.319(4) | N3-N4 | 1.301(4) | N2-C25 | 1.317(4) | | N4-C38 | 1.321(4) | C25-C26 | 1.475(5) | C25-C32 | 1.470(5) | | C38-C39 | 1.481(5) | C38-C45 | 1.466(5) | $Si-C_{ave}$ | 1.928(5) | | C-C(silox) _{ave} | 1.539(9) | $C-C(Ph)_{ave}$ | 1.385(13) | | | | O1-Cr1-O2 | 118.46(11) | O1-Cr1-N1 | 110.48(12) | O1-Cr1-N3 | 107.02(12) | | O2-Cr-N1 | 105.86(12) | O2-Cr1-N3 | 108.78(11) | N1-Cr1-N3 | 105.54(14) | | Cr1-O1-Si1 | 148.66(15) | Cr1-O2-Si2 | 149.27(15) | Cr1-N1-N2 | 150.2(2) | | Cr1-N3-N4 | 150.4(3) | N1-N2-C25 | 119.5(3) | N3-N4-C38 | 119.6(3) | | N2-C25-C26 | 124.3(3) | N2-C25-C32 | 116.3(3) | N4-C38-C39 | 122.5(3) | | N4-C38-C45 | 116.7(3) | C26-C25-C32 | 119.4(3) | C39-C38-C45 | 120.9(3) | | C25-C26-C27 | 119.1(3) | C25-C26-C31 | 122.8(3) | C25-C32-C33 | 121.6(3) | | C25-C32-C37 | 119.3(3) | C38-C39-C40 | 119.8(3) | C38-C39-C44 | 122.0(3) | | C38-C45-C46 | 120.4(4) | C38-C45-C50 | 121.3(4) | O-Si-C _{ave} | 106.5(25) | | C-Si-C _{ave} | 112.3(3) | $Si-C-C_{ave}$ | 111.5(16) | $C-C-C(silox)_{ave}$ | 107.3(10) | | $C-C-C(Ph)_{ave}$ | 120.1(9) | | | | | Table 8. Selected Interatomic Distances (Å) and Angles (deg) in ('Bu₃SiO)₂Cr=N(2,6-Ph₂-C₆H₃) (3-(2,6-Ph₂-C₆H₃)) | Cr1-O1
Si1-O1
C6-C7
Si-C _{ave} | 1.7800(19)
1.630(2)
1.486(4)
1.921(6) | Cr1-O2
Si2-O2
C11-C13
C-C(silox) _{ave} | 1.7802(18)
1.6332(19)
1.490(4)
1.54(8) ^a | Cr1-N1
N1-C12
C-C(Ph) _{ave} | 1.649(2)
1.372(3)
1.385(17) | |--|--|--|--|--|-----------------------------------| | O1-Cr1-O2 | 122.02(10) | O1-Cr1-N1 | 118.93(11) | O2-Cr1-N1 | 118.96(10) | | Cr1-O1-Si1 | 155.77(19) | Cr1-O2-Si2 | 154.64(13) | Cr1-N1-C12 | 175.9(2) | | N1-C12-C7 | 119.8(2) | N1-C12-C11 | 119.0(2) | $C-C-C(Ph)_{ave}$ | 120.3(11) | | O-Si-C _{ave} | 106.2(15) | C-Si-C _{ave} | 112.5(6) | $Si-C-C_{ave}$ | $111.4(41)^a$ | | $C-C-C(silox)_{ave}$ | 107.8(21) | $C-C-C(Ph)_{ave}$ | 120.1(9) | | | ^a Error reflects disorder in two tert-butyl groups. 6 h) and in the solid state ($t_{1/2} \approx 1$ week); it degrades completely within minutes at 80 °C in C_6D_6 . ¹H NMR spectra of the degradation product(s) were indicative of two species, one paramagnetic and one diamagnetic, but no further characterization was attempted. 2. Molecular Structure. Data and refinement information pertaining to 2 are given in Table 1, while pertinent bond distances and angles are listed in Table 7. As Figure 5 illustrates, 2 is pseudo-tetrahedral, as expected for a fourcoordinate Cr(VI) complex, with a slightly splayed O1-Cr1-O2 angle of 118.46(11)° in comparison to the 105.54-(14)° angle subtended by the diphenylmethylidenehydrazido nitrogens. The remaining O-Cr-N angles are between these values: $\angle O1-Cr-N1,N3 = 110.48(12)^{\circ}, 107.02(12)^{\circ}$ and $\angle O2-Cr-N1,N3 = 105.86(12)^{\circ}, 108.78(11)^{\circ}$. The Cr(VI)oxygen siloxide distances of 1.803(2) and 1.802(2) Å are significantly shorter than the aforementioned bonds to Cr(II), as expected.³⁰ The Cr-O-Si angles are more bent than usual (148.66(15)°, 149.27(15)°), perhaps reflecting the steric influence of the diphenylmethylidenehydrazido linkages. The Cr(VI)-N bond lengths of 1.664(2) and 1.666(2) Å are normal for dianionic nitrogen-based ligands,³¹ and the N–N bond distances of 1.319(4) and 1.301(4) Å fall between those of PhN=NPh (1.26 Å)³² and PhHC=N–N=CHPh (1.32 Å),³³ while clearly remaining sp²-hybridized at the β -nitrogens, as the N–N–C bond angles (119.5(3)°, 119.6(3)°) indicate. Coupled with the Cr–N–N bond angles of 150.2-(2)° and 150.4(3)°, the data suggest contributions from CrN double- (A) and triple-bonded (B) resonance structures, as indicated by Figure 6.^{29,34} The slightly short N–N distances may reflect α -nitrogens whose hybridization is between sp and sp² due to the chromium–nitrogen multiple bonding or some charge distribution into the phenyl groups (C), as the subtly long N–C bond distances (1.317(4), 1.321(4) Å) imply (normal bond lengths: C=N, 1.28 Å; C–N(sp²), 1.38 Å). [(${}^{t}Bu_{3}SiO$)Cr]₂(μ -OSi ${}^{t}Bu_{3}$)₂ Cleavage by RN₃. 1. Synthesis of (${}^{t}Bu_{3}SiO$)₂Cr(=NR)_x (x=1, 3-R; 2, 4-R). While the addition of diphenyldiazomethane to $\mathbf{1}_{2}$ failed to yield an alkylidene via N₂ loss, ${}^{27-29}$ organoazide additions³⁵ ⁽³⁰⁾ Coles, M. P.; Gibson, V. C.; Clegg, W.; Elsegood, M. R. J. Polyhedron 1998, 17, 2483–2489. ⁽³¹⁾ Nugent, W. A.; Mayer, J. M. Metal—Ligand Multiple Bonds; Wiley-Interscience: New York, 1988. ⁽³²⁾ Brown, C. J. Acta Crystallogr. **1966**, 21, 146–152. ⁽³³⁾ Sinha, U. C. Acta Crystallogr. 1970, B26, 889-895. ⁽³⁴⁾ Mizobe, Y.; Ishii, Y.; Hidai, M. Coord. Chem. Rev. 1995, 139, 281–311 Figure 5. Molecular views of (^tBu₃SiO)₂Cr(N₂CPh₂)₂ (2). resulted in dimer cleavage and formation of unusual Cr(IV) mono-imido species or the Cr(VI) diimido complexes according to eqs 4 and 5. For bulky RN_3 (R = adamantyl (Ad), $2,6^{-i}Pr_2-C_6H_3$, $2,4,6-Me_3-C_6H_2 =$ Mes, $2,6-Ph_2-C_6H_3$), the paramagnetic, Cr(IV) $$[({}^{t}Bu_{3}SiO)Cr]_{2}(\mu\text{-OSi}{}^{t}Bu_{3})_{2} + 2N_{3}R \xrightarrow{23 \text{ °C}} \xrightarrow{\text{pentane}}$$ $$2({}^{t}Bu_{3}SiO)_{2}Cr = NR + 2N_{2} \text{ (4)}$$ $$3\text{-R (R = Ad, 2,6-}{}^{t}Pr_{2}-C_{6}H_{3},$$ $$2,4,6\text{-Me}_{3}-C_{6}H_{2}, 2,6\text{-Ph}_{2}-C_{6}H_{3})$$ $$[({}^{t}Bu_{3}SiO)Cr]_{2}(\mu\text{-OSi}{}^{t}Bu_{3})_{2} + 4N_{3}R \xrightarrow{23 \text{ °C}} \xrightarrow{\text{benzene}}$$ $$1_{2}$$ $$2({}^{t}Bu_{3}SiO)_{2}Cr(=NR)_{2} + 4N_{2} \text{ (5)}$$ $$4\text{-R (R = 1-Naph, 2-Anth)}$$ **Figure 6.** Resonance contributions relevant to the hydrazido bonding in ('Bu₃SiO)₂Cr(N₂CPh₂)₂ (2). Structures A, B, and C are significant, while D is not likely. monoimido (silox)₂Cr=NR (**3**-R) was the major product. Difficulties in obtaining X-ray-quality crystals of **3**-R prompted the use of 1-azidonaphthalene and 2-azidoan-thracene, but these smaller substrates afforded the diamagnetic Cr(VI) diimido species (¹Bu₃SiO)₂Cr(=NR)₂ (**4**-R, R = 1-Naph, 2-Anth) along with unreacted **1**₂, implicating the stoichiometry given in eq 5. It appears that azide oxidation of Cr(IV) to Cr(VI) is swifter than the initial Cr(II)-to-Cr(IV) imide formation, unless the second reaction is sterically $$({}^{t}Bu_{3}SiO)_{2}Cr=NAd + AdN_{3} \xrightarrow{100 {}^{\circ}C, 4 \text{ h} \atop benzene-d_{6}}$$ $$({}^{t}Bu_{3}SiO)_{2}Cr(=NAd)_{2} + N_{2} (6)$$ $$4-Ad$$ impeded. Treatment of 3-Ad with another equiv of AdN₃ yielded 4-Ad, but only after heating at 100 °C for several hours (eq 6); 4-Ad was also prepared via eq 5. NMR spectra of 4-Ad correlated nicely with that previously reported for (Me₃SiO)₂Cr(=NAd)₂.³⁰ **2. Molecular Structure of** (^tBu₃SiO)₂Cr=N(2,6-Ph₂-C₆H₃) (3-(2,6-Ph₂-C₆H₃)). Data and refinement information for (^tBu₃SiO)₂Cr=N(2,6-Ph₂-C₆H₃) (3-(2,6-Ph₂-C₆H₃)) have been tabulated (Table 1), its bond distances and angles are listed in Table 7, and a molecular view is shown in Figure 7. The molecule crystallizes in a chiral space group due to the cant of the ortho phenyl substituents on the terphenyl ⁽³⁵⁾ For a selection imido syntheses from RN3, see: (a) Schweda, E.; Scherfise, K. D.; Dehnicke, K. Z. Anorg. Allg. Chem. 1985, 528, 117-124. (b) Cummins, C. C.; Schrock, R. R.; Davis, W. M. Inorg. Chem. 1994, 33, 1448-1457. (c) Fickes, M. G.; Davis, W. M.; Cummins, C. C. J. Am. Chem. Soc. 1995, 117, 7, 6384-6385. (d) Elliott, R. L.; Nichols, P. J.; West, B. O. Polyhedron 1987, 6, 2191-2192. (e) Chou, C. Y.; Huffman, J. C.; Maatta, E. A. J. Chem. Soc., Chem. Commun. 1984, 17, 1184-1185. (f) Maatta, E. A.; Du, Y.;
Rheingold, A. L., J. Chem. Soc., Chem. Commun. 1990, 10, 756-757. (g) Lichtenhan, J. D.; Critchlow, S. C.; Doherty, N. M., Inorg. Chem. 1990, 29, 439-442. (h) Chisholm, M. H.; Folting, K.; Huffman, J. C.; Kirkpatrick, C. C.; Ratermann, A. L. J. Am. Chem. Soc. 1981, 103, 1305-1306. (i) Listemann, M. L.; Schrock, R. R.; Dewan, J. C.; Kolodziej, R. M. Inorg. Chem. 1988, 27, 264-271. (j) Hillhouse, G. L.; Haymore, B. L. J. Organomet. Chem. 1978, 162, C23-C26. (k) Danopoulos, A. A.; Redshaw, C.; Vaniche, A.; Wilkinson, G.; Hussain-Bates, B.; Hursthouse, M. B. Polyhedron 1993, 12, 1061-1071. **Figure 7.** Molecular view of (${}^{t}Bu_{3}SiO)_{2}Cr = N(2,6-Ph_{2}-C_{6}H_{3})$ (3-(2,6-Ph₂-C₆H₃)). fragment that impart a C_2 symmetry to 3-(2,6-Ph₂-C₆H₃). The complex is virtually trigonal in terms of its core angles, with \angle O1-Cr1-O2 = 122.02(10)°, \angle O1-Cr1-N1 = 118.93-(11)° and \angle O2-Cr1-N1 = 118.96(10)°. The chromium-nitrogen distance of 1.649(2) Å is normal, as are the d(CrO) of 1.7800(19) and 1.7802(18) Å, and the accompanying Cr1-N1-C12 angle of 175.9(2)° suggests that a triple bond is present, albeit one with disparate π bonds due to interactions with energetically different d_{xz} and d_{yz} orbitals. 3. Calculations on (H₃SiO)₂Cr=NPh (3"-Ph). In reference to 3-(2,6-Ph₂-C₆H₃), density functional calculations on (H₃SiO)₂Cr=NPh (3"-Ph) were conducted. Figure 8 illustrates the geometries of the ground state (GS) triplet (T) and lowest excited state (ES) singlet (S) species. For the GS triplet (a), the bond distances are all within 0.03 Å of those observed for 3-(2,6-Ph₂-C₆H₃), and all the angles are within a few degrees, but the phenyl group is in the trigonal plane rather than perpendicular to it. The silox groups are an obvious steric influence on the phenyl group geometry in $3-(2,6-Ph_2-C_6H_3)$; thus, the phenyl group in 3"-Ph was artificially rotated to see whether the orbital energies in Figure 9 are germane to the real system. Little change was noted; hence, the calculated 3"-Ph geometry and orbital energies were deemed sufficiently accurate to discuss. Two ES singlet minima corresponding to in-plane and perpendicular phenylimido structures were found. The in-plane geometry was lower in energy, leading to a +14.3 kcal/mol S/T energy gap, but the perpendicular geometry (S/T gap = 15.0 kcal/mol) was considered more relevant given the aforementioned steric influences, and the orbitals in Figure 9 correspond to this model. Note that the singlet ES conformation manifests changes from the GS that include significantly shortened Cr-O (by 0.04 Å) and Cr-N (by 0.02 Å) distances, a more open O-Cr-O angle of 127.7° and correspondingly lesser O-Cr-N angles of 115.4° and 116.5°. The d-orbital splitting diagrams and corresponding orbital energies for the GS and ES species are given in Figure 9. In the GS, the lowest orbital is d_z^2 , which is basically nonbonding, and it contains one electron. One might expect d_{r^2} to have some σ^* character, but in this low-symmetry environment, a higher-energy "4s orbital" contains this component. The next orbital is d_{yz} , which is π antibonding with respect to an antisymmetric combination of siloxide oxygen p_z orbitals, and it is 0.45 eV above d_{z^2} and contains one electron. There is a rather large energy gap (1.14 eV) before the next, unoccupied orbital, which is d_{xz} , an orbital that is π^* with respect to the imido nitrogen and π^* with respect to a symmetric combination of silox oxygen p_z orbitals. Next comes $d_{x^2-y^2}$, which has predominantly CrN σ^* character, but is also π^* with respect to the in-plane symmetric combination of silox oxygen p_x orbitals. It resides 0.59 eV above d_{xz} but 0.69 eV below the highest orbital, d_{xy} , which is basically CrO σ^* in character and π^* with respect to the in-plane CrN π interaction. At \sim 15 kcal/mol above the GS, the ES singlet cannot be thermally poplulated to any significant extent. A pair of electrons resides in d₂, and the remaining orbital ordering and composition is similar to the GS except for a switch in $d_{x^2-y^2}$ and d_{xy} . The huge energy gap between d_{z^2} and d_{yz} (3.87) eV!) is in part due to increase in the O-Cr-O angle from \sim 119° to 128°, which imparts far greater π^* character with respect to the antisymmetric combination of oxygen pz orbitals. This same distortion places greater Cr-O σ^* character to $d_{x^2-y^2}$, causing it to increase in energy and rise above d_{xy} whose oxygen σ^* character is partly diminished. The total energetics of the GS and ES must be assessed to understand the nature of the S/T gap of 15 kcal/mol. Figure 9 focuses on the frontier orbital energetics, but it is the energies of the ligand-localized orbitals (not shown) that dominate the total energies of the triplet GS and single ES. #### **Discussion** **Chromous Dimer, 1₂.** The butterfly arrangement of 1₂, while structurally related to some of the μ -amido species in Table 3, is different than Powers' dialkoxide, [('Bu₃CO)-Cr]₂(μ -OCH'Bu₂)₂,³⁶ which possesses a planar core. Unfortunately, electronic features of the chromous alkoxide, which is generated via thermal degradation of ('Bu₃CO)Cr(μ -Cl)-(μ -OC'Bu₃)Li(THF)₂,³⁷ were not investigated. Curiously, in the crystal structure of [('Bu₃CO)Cr]₂(μ -OCH'Bu₂)₂, there are two independent molecules with d(Cr···Cr) of 3.075(1) and 3.042(1) Å, whose difference is quite similar to that of the crystallographically independent molecules of 1₂. The modest geometric changes between the siloxide and alkoxide dinuclear complexes, which may be steric in nature, perhaps testify to the weak metal—metal interactions intrinsic in these chromous systems. While it is tempting to describe the antiferromagnetic interaction in $\mathbf{1}_2$ and like compounds with a single J—and ⁽³⁶⁾ Murray, B. D.; Hope, H.; Power, P. P. J. Am. Chem. Soc. 1985, 107, 169–173. ⁽³⁷⁾ Hvoslef, J.; Hope, H.; Murray, B. D.; Power, P. P. Chem. Commun. 1983, 1438–1439. Figure 8. (H₃SiO)₂Cr=NPh (3"-Ph) geometries pertaining to the ground-state triplet (a) and first excited-state singlet (b) states. **Figure 9.** $(H_3SiO)_2Cr$ =NPh (3"-Ph, z perpendicular to the trigonal plane, x along the CrN vector) selected orbital energies pertaining to the ground-state triplet (a) and first excited-state singlet (b) states. for comparison sake this still may be useful—the calculations show that the magnetic properties of dichromous systems may require inclusion of a greater number of states. In this instance, while the major contributors were the 3B_1 and 5A_1 states, inclusion of minor 1A_1 , 7B_1 and even 1% of the 9A_1 proved to aid in the estimation of the magnetism. There is still a discrepancy between the low-temperature $\mu_{\rm eff}$ vs T observed and calculated plots (Figure 2), but the air sensitivity of $\mathbf{1}_2$ and the plausible contribution of paramagnetic impurities (probably Cr(III)) at T < 50 K render a discussion of the differences somewhat specious. In view of the magnetism and calculations, as well as the ready cleavage of $\mathbf{1}_2$, the dichromium interaction is best considered one of strong antiferromagnetic character. 12 as a Source of "(silox)2Cr" (1). A variety of donors (L) severed the $Cr_2(\mu-OSi^tBu_3)_2$ core of $\mathbf{1}_2$ to produce (silox)₂- CrL_2 (1-L₂, L = 4-picoline, *p*-tolunitrile, ^tBuCN, ^tBuNC, Ph₂-CO, and PMe₃)). Four-coordinate high-spin Cr(II) complexes have a preference for square planar geometry, as seen previously in the cleavage of [Cr(\(\mu\)-OSi\(^tBu_3\))(\(\mu\)-Cl)]_4 by THF and 4-picoline to afford trans-('Bu₃SiO)ClCr(THF)₂ and trans-(tBu₃SiO)₂Cr(NC₅H₄-p-Me)₂ (1-(4-pic)₂).4 Other alkoxide and siloxide species such as Cr{OSi(OtBu)₃}₂(NHEt₂)₂,²⁴ trans-Cr(OR)₂(THF)₂²⁵ (R = 2,6-di-^tBu-4-methylphenyl), and [(TMEDA)Na]₂Cr(OR')₄²⁶ are also known. The only unusual cleavage product is 1-(PMe₃)₂, whose intense blue color contrasts with the more muted hues of the known square planar derivatives. The possibility exists that square planar ≠ tetrahedral isomerizations akin to the classic d⁸ L₂Ni^{II}X₂ cases³⁸ may be operational for this chromous system. It is here that the bulk of the silox ligand might enable the observation of pseudo- T_d complexes via relief of steric congestion with large L such as PMe₃. Adduct (i.e., (silox)₂CrL₂ (1-L₂)) formation, the generation of **2** from **1**₂ and Ph₂CNN, and **3**-R synthesis from **1**₂ and RN₃ essentially occur upon mixing of the reagents. It is tempting to conclude that L or Ph₂CNN or RN₃ must be reacting directly with the Cr₂(μ -OSi'Bu₃)₂ core, but a rapid equilibrium between dimer and monomer, i.e., **1**₂ \rightleftharpoons 2('Bu₃-SiO)₂Cr (**1**), cannot be ruled out. Assuming **1** would be rapidly trapped by L, and estimating a "mixing time", τ , of 1 s (roughly the reaction time as observed by the color change), then the dissociation of **1**₂ would be roughly 1 s⁻¹ ($\Delta G^{\ddagger} \approx 17 \text{ kcal/mol}$), which is certainly with reason for a weakly metal—metal-bonded dinuclear complex. Given the rates, regardless of mechanism, it is certainly reasonable to consider **1**₂ as a source of "(silox)₂Cr (**1**)". **Dihydrazide 2.** While the bis-diphenylmethylidenehydrazido species **2** is unusual, it is not unique. One of the earliest diazoalkane complexes with similar M-NNC bond- ⁽³⁸⁾ Pinolet, L. H.; Horrocks, W. DeW. Jr.; Holm, R. H. *J. Am. Chem. Soc.* **1970**, *92*, 1855–1863 and references therein. ing parameters to **2** was observed by Chisholm and coworkers.³⁹ The dinuclear complex, [(ⁱPrO)₂(Ph₂CN₂)Mo](μ-OⁱPr)₃[Mo(N₂CPh₂)(OⁱPr)(py)], has a single Mo—Mo bond, and both diphenylmethylidenehydrazido ligands are terminal. First-row transition row transition metal complexes derived from diazoalkane complexes are less common,
but several have been structurally characterized including Cp₂Ti(N₂-CPh₂)(PMe₃),⁴⁰ [(Me₃Si)₂N]₂V(N₂CPh₂)(Cl),⁴¹ and (ArN=)₂-Cr(N₂CPh₂)(PMe₃).⁴² What is unique about the conversion of **1**₂ to **2** upon addition of Ph₂CNN is the conversion of Cr(II) to Cr(VI), but this is mostly a consequence of the lack of chromous reagents that could accommodate two of the diphenylmethylidenehydrazido ligands. Imido Derivatives (${}^{t}Bu_{3}SiO)_{2}Cr(=NR)_{x}$ (x = 1, 3-R; 2,**4-R).** A brief look at the literature reveals that the bis-imido species 4-R are rather common, but the mono-imido 3-R complexes are rare. Numerous Cr(VI) imido complexes have been characterized in the literature beginning with Nugent and co-workers, who isolated (Me₃SiO)₂Cr(=N^tBu)₂ from the treatment of CrO₂Cl₂ with ^tBu(SiMe₃)NH.⁴³ Subsequent cleavage of the siloxide linkage with BCl₃ yielded Cl₂Cr(= N^tBu)₂,⁴⁴ and both species act as precursors to a variety of other Cr(VI) organoimido species. 45-47 Well-characterized monomeric reduced chromium imido species are less prevalent than their Cr(VI) analogues. 48 Cr(V) imido species tend to dimerize via imido bridges to maintain tetrahedral coordination in the absence of bulky ligands or a coordinating solvent. Oxidation of [CpCrCl₂]₂ with Me₃SiN=NSiMe₃ yielded the Cr(V) dimer [CpCr=NSiMe₃]₂(μ -NSiMe₃)₂,⁴⁹ while reduction of Cl₂Cr(=N^tBu)₂ with cobaltocene gave the related $[ClCr=N^tBu]_2(\mu-N^tBu)_2$. The monomeric Cr(V)species ${}^{t}BuN=CrCl_{3}L_{2}$ (L = PEt₂Ph, THF, py, 0.5DME) were obtained from the reductive chlorination of Cl₂Cr(= $N^{t}Bu)_{2}$ to form $[{}^{t}BuN=CrCl_{3}]_{x}$, which was then treated with L⁴⁸ and often derivatized further.⁴⁶ The structure of **3**-(2,6-Ph₂-C₆H₃) is related to the previously characterized W(IV) monomer, (^tBu₃SiO)₂W=N^tBu.⁵¹ Both are planar and pseudo-trigonal, but the tungsten derivative is low spin, while **3**-(2,6-Ph₂-C₆H₃) and the other (39) Chisholm, M. H.; Folting, K.; Huffman, J. C.; Ratermann, A. L. J. Chem. Soc., Chem. Commun. 1981, 1229–1230. - (41) Gerlach, C. P.; Arnold, J. Organometallics 1997, 16, 5148-5157. - (42) Chew, K. C.; Clegg, W.; Coles, M. P.; Elsegood, M. R. J.; Gibson, V. C.; White, A. J. P.; Williams, D. J. J. Chem. Soc., Dalton. Trans. 1999, 2633–2639. - (43) Nugent, W. A.; Harlow, R. L. Inorg. Chem. 1980, 19, 777-779. - (44) Chiu, H. T.; Chen, Y. P.; Chuang, S. H.; Jen, J. S.; Lee, G. H.; Peng, S. M. J. Chem. Soc., Chem. Commun. 1996, 139–140. - (45) Danopoulos, A. A.; Wilkinson, G.; Sweet, T. K. N.; Hursthouse, M. B. J. Chem. Soc., Dalton. Trans. 1995, 2111–2123. - (46) Leung, W.-H. Eur. J. Inorg. Chem. 2003, 583-593. - (47) Coles, M. P.; Dalby, C. I.; Gibson, V. C.; Clegg, W.; Elsegood, M. R. J. J. Chem. Soc., Chem. Commun. 1995, 1709—1710. - (48) Danopoulos, A. A.; Hussain-Bates, B.; Hursthouse, M. B.; Leung, W.-H.; Wilkinson, G. J. Chem. Soc., Chem. Commun. 1990, 1678–1679. - (49) Wiberg, N.; Häring, H. W.; Schubert, U. Z. Naturforsch., Teil B 1978, 33, 1365–1369. - (50) Danopoulos, A. A.; Leung, W. H.; Wilkinson, G.; Hussain-Bates, B.; Hursthouse, M. B. Polyhedron 1990, 9, 2625–2634. - (51) Eppley, D. F.; Wolczanski. P. T.; Van Duyne, G. D. Angew. Chem., Int. Ed. Engl. 1991, 30, 584–585. 3-R RN₃ (R = Ad, 2,6-iPr₂-C₆H₃, Mes) appear to possess S = 1 ground states according to their nearly spin-only $\mu_{\rm eff}$ values at room temperature. As the d-orbital splitting diagram in Figure 9 reveals, the d_z^2 is proximate to d_{yz} in energy for the Cr complex, whereas in W, the d_z^2 orbital is likely to be energetically quite lower. It is this stability of d_z^2 which appears to be a critical factor in rendering third-row d^2 species diamagnetic (e.g., Ta, 2 W). 52 One example of a structurally characterized,⁴⁶ monomeric Cr(IV) organoimido complex is *trans*-[CrCl(NEt)(dmpe)₂]-[SO₃CF₃], which was prepared by Wilkinson et al. upon addition of addition of Ba(O₃SCF₃)₂ to a methanol solution of *trans*-[CrCl(NCMe)(dmpe)₂][BPh₄].⁵³ Magnesium reduction of (ArN)₂CrCl₂ (Ar = 2,6-iPr₂C₆H₃) in the presence of 2 equiv of PR₃ (R=PMe₃,PMe₂Ph) yielded diamagnetic (ArN)₂Cr(PR₃)₂,⁴² while West and co-workers⁵⁴ synthesized the high-spin Cr(IV) organoimido porphyrin complex, *p*-MeC₆H₄N=Cr(TPP) from the treatment of Cr(TPP) with excess *p*-tolyl azide in toluene. #### **Summary** The chromous dimer $\mathbf{1}_2$ possesses a weak metal—metal interaction that enables it to behave as a source of $\mathbf{1}$ in the formation of simple adducts, $\mathbf{1}$ -L₂, a Cr(VI) dihydrazido species, species $\mathbf{2}$, and Cr(IV) and Cr(VI) imido complexes, (${}^{1}\text{Bu}_3\text{SiO})_2\text{Cr}(=N\text{R})_x$ (x = 1, 3-R; 2, 4-R). ## **Experimental Section** **General Considerations.** All manipulations were performed using either glovebox or high vacuum line techniques. Hydrocarbon solvents containing 1–2 mL of added tetraglyme and ethereal solvents were distilled under nitrogen from purple sodium benzophenone ketyl and vacuum-transferred from same prior to use. C_6D_6 was dried over activated 4 Å molecular sieves, vacuum transferred, and stored under N_2 . The compounds $CrCl_2(thf)$, 55 $NaOSi^tBu_3$, 56 Ph_2CN_2 , 57 and N_3R (R = Ad (adamantyl) 2,6- iPr_2 - C_6H_3 , 2,4,6- Me_3 - C_6H_2 (Mes), 1-Naph (1-naphthalenyl), 2-Anth (2-anthracenyl), 58 and 2,6- Ph_2 - C_6H_3) were prepared according to literature procedures. All other chemicals were purchased from commercial sources and used as received. Benzophenone was purified by sublimation prior to usage. All glassware was ovendried, and NMR tubes for sealed-tube experiments were additionally flame-dried under dynamic vacuum. NMR spectra were obtained using INOVA-400 and Unity-500 spectrometers, and chemical shifts are reported relative to C_6D_6 (1H , δ 7.15; $^{13}C\{^1H\}$, δ 128.39). Infrared spectra were recorded on a Nicolet Impact 410 spectrophotometer interfaced to a Gateway - (52) Soo, H. S.; Figueroa, J. S.; Cummins, C. C. J. Am. Chem. Soc. 2004, 126, 11370–11376. - (53) Barron, A. R.; Salt, J. E.; Wilkinson, G.; Motevalli, M.; Hursthouse, M. B. J. Chem. Soc., Dalton. Trans. 1987, 2947–2954. - (54) Elliott, R. L.; Nichols, P. J.; West, B. O. Polyhedron, 1987, 6, 2191–2192. - (55) Kern, R. J. Inorg. Nucl. Chem. 1962, 24, 1105-1109. - (56) LaPointe, R. E.; Wolczanski, P. T.; Van Duyne, G. D. Organometallics 1985, 4, 1810–1818. - (57) Miller, J. B. J. Org. Chem. 1959, 24, 560-561. - (58) Liu, Q.; Tor, Y. Org. Lett. 2003, 5, 2571-2572. - (59) (a) Miura, Y.; Hiroyuki, O.; Momoki, M. Synthesis 1995, 11, 1419–1422. (b) Ozasa, S.; Fujioka, Y.; Ichiro, J.; Eiichi, K.; Chem. Pharm. Bull. 1983, 31, 1572–1581. (c) Gavenonis, J.; Tilley, T. D. Organometallics 2002, 21, 5549–5563 ⁽⁴⁰⁾ Kool, L. B.; Rausch, M. D.; Alt, H. G.; Herberhold, M.; Hill, A. F.; Thewalt, U.; Wolf, B. J. Chem. Soc., Chem. Commun. 1986, 408–409. PC. Elemental analyses were performed by Oneida Research Services, Whitesboro, NY, or Robertson Microlit Laboratories, Madison, NJ. Magnetic moments were determined in C_6D_6 at room temperature using Evans' method¹⁶ with an applied diamagnetic correction. **Procedures. 1.** [('Bu₃SiO)Cr]₂(μ -OSi'Bu₃)₂ (1₂). A 50 mL flask was charged with CrCl₂(thf) (0.600 g, 3.077 mmol), NaOSi'Bu₃ (1.070 g, 4.487 mmol), and thf (40 mL). The mixture was stirred at 23 °C for 10 h, and the solvent was removed under vacuum. The green solid was heated at 70 °C under vacuum to effect desolvation, extracted with pentane, and filtered. The solution was concentrated and crystallized at -78 °C to yield 1₂ as green blocks (0.806 g, 74% based on NaOSi'Bu₃). ¹H NMR (C₆D₆, 400 MHz): δ 1.71 (ν _{1/2} \approx 210 Hz). IR (Nujol Mull, NaCl, cm⁻¹): 1012 (w), 952 (m), 922 (s), 858 (m), 820 (s), 621 (s). Anal. Calcd C₂₄H₅₄-Si₂O₂Cr: C, 59.68; H, 11.29. Found: C 56.8, H 11.2. μ _{eff}(293 K) = 2.8 μ _B (Evans' method in C₆D₆). **2.** trans-('Bu₃SiO)₂Cr(p-NCC₆H₄Me)₂ (1-(NCtol)₂). p-NCC₆H₄-Me (0.049 g, 0.418 mmol) was added to a pentane solution of $\mathbf{1}_2$ (0.100 g, 0.104 mmol). Yellow crystalline $\mathbf{1}$ -(NCtol)₂ precipitated over 20 min (0.138 g, 93%). 'H NMR (C₆D₆, 400 MHz): δ –13.04 ($\nu_{1/2} \approx 470$ Hz, 4H, CH), 3.35 ($\nu_{1/2} \approx 800$ Hz, 54H, silox), 16.11 ($\nu_{1/2} \approx 100$ Hz, 4H, CH), 20.97 ($\nu_{1/2} \approx 110$ Hz, 6H, Me). IR (Nujol Mull, NaCl, cm⁻¹): 2258 (s), 1606 (s), 1509 (m), 1178 (m), 997 (br s), 933 (w), 816 (s), 614 (s), 552 (s). Anal. Calcd C₄₀H₆₈Si₂N₂O₂-Cr: C, 64.6; H, 10.3; N, 4.2. Found: C, 61.8; H, 9.4; N, 5.5. $\mu_{\rm eff}$ (293 K) = 4.8 $\mu_{\rm B}$ (Evans' method in C₆D₆). **3.** trans-('Bu₃SiO)₂Cr(NC'Bu)₂ (1-(NC'Bu)₂). 'BuCN (9 μ L, 0.08 mmol) was added to a C₆D₆ solution containing **1**₂ (0.020 g, 0.0207 mmol). The solution turned pink instantaneously. Slow evaporation of the C₆D₆ solution yielded pink solid **1**-(NC'Bu)₂ (~0.015 g, ~60%). ¹H NMR (C₆D₆, 400 MHz): δ 3.04 (ν _{1/2} \approx 670 Hz, 54H, C(CH₃)₃), 5.73 (ν _{1/2} \approx 230 Hz, 18H, NC'Bu). IR (Nujol Mull, NaCl, cm⁻¹): 2272 (s), 1239 (m), 1207 (w), 1027 (s), 986 (s), 932 (m), 817 (m), 614 (s), 583 (m). **4.** *trans*-(**'Bu₃SiO**)₂Cr(CN^tBu)₂ (1-(CN^tBu)₂). A 3 dram vial was charged with 1₂ (0.101 g, 0.105 mmol), CN^tBu (47 μL, 0.449 mmol), and pentane (3 mL). The solution was allowed to sit 16 h, and then the solvent was allowed to slowly evaporate at 23°C to yield orange microcrystalline 1-(CN^tBu)₂ (0.113 g, 83%). ¹H NMR (C₆D₆, 300 MHz): δ 3.17 (peak has an upfield shoulder, $\nu_{1/2} \approx 700$ Hz). IR (Nujol Mull, NaCl, cm⁻¹): 2192 (s), 2099 (m), 1237 (m), 1206 (s), 1024 (s), 977 (s), 851 (w), 817 (s), 707 (w), 615 (s). $\mu_{\rm eff}(293 \text{ K}) = 4.8 \mu_{\rm B}$ (Evans' method in C₆D₆). **5.** ('Bu₃SiO)₂Cr(PMe₃)₂ (1-(PMe₃)₂). An NMR tube was charged with 1₂ (0.025 g, 0.0518 mmol) and PMe₃ (0.5 mL), forming a deep blue solution. The PMe₃ was removed under
vacuum to yield a tacky blue solid. Attempts at scaling up the reaction resulted in deep blue oils. ¹H NMR (C₆D₆, 400 MHz): δ 1.23 (ν _{1/2} \approx 680 Hz, 54H, C(CH₃)₃), 17.79 (ν _{1/2} \approx 900 Hz, 18H, PMe₃). **6.** *trans*-(^tBu₃SiO)₂Cr(O=CPh₂)₂ (1-(OCPh₂)₂). A 3 dram vial was charged with $\mathbf{1}_2$ (0.080 g, 0.083 mmol), benzophenone (0.060 g, 0.329 mmol), and heptane (2 mL). The solution was allowed to sit 16 h, and then the solvent was allowed to slowly evaporate at 23 °C to yield purple-red microcrystalline 1-(OCPh₂)₂ (0.092 g, 66%). ¹H NMR (C₆D₆, 400 MHz): δ 1.72, 3.21 (resonances overlap). IR (Nujol Mull, NaCl, cm⁻¹): 1625 (s), 1598 (s), 1574 (s), 1329 (s), 1298 (s), 1285 (s), 1182 (m), 1160 (m), 989 (s), 948 (m), 940 (m), 928 (m), 819 (s), 766 (s), 709 (s), 696 (s), 643 (s), 616 (s). Anal. Calcd C₅₀H₇₄Si₂O₄Cr: C, 70.9; H, 8.8. Found: C, 69.2; H, 9.0. μ_{eff} (293 K) = 4.8 μ_{B} (Evans' method in C₆D₆). **7. 2.** $(^{1}\text{Bu}_{3}\text{SiO})_{2}\text{Cr}(N_{2}\text{CPh}_{2})_{2}$ (2). A 4 dram vial was charged with 1_{2} (0.127 g, 0.132 mmol) and pentane (3 mL). $\text{Ph}_{2}\text{CN}_{2}$ (0.102 g, 0.525 mmol) was added to the green solution which instantly turned dark brown. The solution was allowed to slowly evaporate at $-30~^{\circ}\mathrm{C}$, yielding black crystals (0.129 g, 56%). $^{1}\mathrm{H}$ NMR (C₆D₆, 400 MHz): δ 1.26 (s, 54H, C(CH₃)₃), 6.9–7.1 (m, 12H, CH_{meta}-CH_{para}), 7.69 (d, $^{3}J=5$, 4H, CH_{ortho}). $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (C₆D₆, 400 MHz): δ 24.73, 30.89, 128.99, 131.10, 136.01, 149.95. IR (Nujol Mull, NaCl, cm $^{-1}$): 1587 (s), 1565 (s), 1321 (s), 1178 (m), 1077 (m), 1027 (m), 1000 (m), 983 (m), 956 (s), 933 (s), 909 (s), 818 (s), 775 (s), 765 (s), 693 (s), 655 (m), 622 (m), 570 (m). Anal. Calcd C₅₀H₇₄Si₂N₄O₂Cr: C, 68.9; H, 8.6; N, 6.4. Found: C, 68.8; H, 9.2; N, 4.8. **8.** ('Bu₃SiO)₂Cr=NAd (3-Ad). A 4 dram vial was charged with 1₂ (0.080 g, 0.083 mmol), AdN₃ (0.029 g, 0.164 mmol), and pentane (3 mL). The solution was allowed to sit 12 h, and then the solvent was allowed to slowly evaporate at -30 °F to yield red microcrystalline 3-Ad (0.071 g, 68%). ¹H NMR (C_6D_6 , 400 MHz): δ -12.71 ($\nu_{1/2}\approx 380$ Hz, 6H, CH₂), 2.05 ($\nu_{1/2}\approx 450$ Hz, 54H, C(CH₃)₃), 4.28 ($\nu_{1/2}\approx 100$ Hz, 6H, CH₂). IR (Nujol Mull, NaCl, cm⁻¹): 1306 (s), 1174 (m), 1150 (s), 1098 (s), 1084 (m), 1061 (s), 1027 (s), 986 (s), 944 (s), 901 (s), 858 (s), 816 (s), 709 (m), 672 (m), 619 (s). Anal. Calcd $C_{34}H_{69}Si_2NO_2Cr$: C, 64.6; H, 11.0; N, 2.2. Found: C, 64.2; H, 11.8; N, 2.8. **9.** (silox)₂Cr=N(2,6-Ph₂C₆H₃) (3-(2,6-Ph₂-C₆H₃)). A 50 mL flask equipped with a stir bar was charged with 1₂ (714 mg, 0.737 mmol), N₃(2,6-Ph₂)C₆H₃ (400 mg, 1.47 mmol), and 15 mL of pentane. Upon warming to 23 °C, the reaction mixture bubbled vigorously and turned reddish-brown. After the solution was stirred for 10 h at 23 °C, the volatile materials were removed, resulting in 932 mg of a red-brown 3-(2,6-Ph₂-C₆H₃) (87%). ¹H NMR (C₆D₆, 400 MHz): δ -64.92 ($v_{1/2} \approx 90$ Hz, 2H), -0.15 ($v_{1/2} \approx 40$ Hz, 4H), 3.04 ($v_{1/2} \approx 140$ Hz, 54H, C(CH₃)₃), 14.06 ($v_{1/2} \approx 20$ Hz, 2H), 25.46 ($v_{1/2} \approx 20$ Hz, 4H), 83.54 ($v_{1/2} \approx 80$ Hz, 1H). IR (Nujol Mull, NaCl, cm⁻¹): 1500, 1295, 1116, 1096, 1067, 983, 817, 758, 698, 619. Anal. Calcd CrSi₂O₂NC₄₂H₆₇: C, 69.5; H, 9.3; N, 1.9. Found: C, 69.0; H, 9.6; N, 2.2. $\mu_{\rm eff}$ (293 K) = 2.8 $\mu_{\rm B}$ (Evans' method in C₆D₆). 10. $(silox)_2Cr = N(2,6^{-i}Pr_2-C_6H_3)$ (3- $(2,6^{-i}Pr_2-C_6H_3)$). To separate 50 mL flasks on opposite ends of a double-ended frit fitted with a 90° needle valve was added $\mathbf{1}_2$ (680 mg, 0.702 mmol) and $N_3(2,6^{-i}Pr_2-C_6H_3)$ (285 mg, 1.40 mmol). Into the flask containing the azide was distilled 20 mL of pentane; the orange solution was then filtered to the flask containing 1_2 . Upon being mixed, effervescense and a color change to brown were noted. The solution was stirred for 10 h at 23 °C, and the volatile materials were removed, resulting in 758 mg of a dark brown 3-(2,6-iPr₂-C₆H₃) (82% yield). ¹H NMR (C₆D₆, 500 MHz): δ -62.80 ($v_{1/2} \approx 135$ Hz, 2H), -27.90 ($v_{1/2} \approx 550$ Hz, 1H), 0.60 ($v_{1/2} \approx 160$ Hz, 12H, CH(CH₃)₂), 3.56 ($v_{1/2} \approx 200$ Hz, 54H, C(CH₃)₃), 93.40 ($v_{1/2} \approx$ 200 Hz, 2H) IR (Nujol Mull, NaCl, cm⁻¹): 1587, 1275, 1103, 1043, 817, 745, 618. Anal. Calcd CrSi₂O₂NC₃₆H₇₁: C, 65.7; H, 10.9; N, 2.1. Found: C, 65.5; H, 10.6; N, 2.4. $\mu_{\text{eff}}(293 \text{ K}) = 2.7 \,\mu_{\text{B}}$ (Evans' method in C_6D_6). 11. (silox)₂Cr=N(2,4,6-Me₃C₆H₂) (3-Mes). To separate 50 mL flasks on opposite ends of a double-ended frit fitted with a 90° needle valve were added 600 mg (0.619 mmol) of [Cr₂] and 200 mg (1.24 mmol) of N₃C₆H₃-(CH₃)₃-2,4,6. Into the flask containing the azide was distilled 20 mL of pentane; the orange solution was then filtered to the flask containing the [Cr₂]. Upon mixing, effervescense and a color change to red-brown were noted. The solution was stirred for 10 h at 25 °C, the volatile materials were stripped, resulting in 688 mg of a dark brown solid (90% yield). ¹H NMR (C₆D₆, 500 MHz): δ –93.46 ($v_{1/2} \approx 330$ Hz, 3H), –68.00 ($v_{1/2} \approx 200$ Hz, 2H), –55.61 ($v_{1/2} \approx 605$ Hz, 6H), 3.74 ($v_{1/2} \approx$ 200 Hz, 54H). IR (Nujol Mull, NaCl, cm⁻¹): 1600, 1288, 884, 811, 718, 625. Anal. Calcd CrSi₂O₂NC₃₃H₆₅: C, 64.3; H, 10.6; N, 2.3. Found: C, 64.0; H, 10.5; N, 2.5. $\mu_{\rm eff}(293~{\rm K})=2.7~\mu_{\rm B}$ (Evans' method in C₆D₆). **12.** ('Bu₃SiO)₂Cr(=NAd)₂ (4-Ad). A 10 mm o.d. glass tube was charged with 1₂ (0.050 g, 0.052 mmol), AdN₃ (0.036 g, 0.203 mmol), and 4 mL of pentane. The solution was degassed, sealed, and heated at 100 °C for 4 h. The brown solution was slowly evaporated at -30 °C to yield brown-black crystals of 4-Ad (0.038 g, 47%). ¹H NMR (C₆D₆, 400 MHz): δ 1.38 (s, 54H, C(CH₃)₃), 1.43 (br d, 2J = 12 Hz, 6H, C⁴HH), 1.52 (br d, 2J = 12 Hz, 6H, C⁴HH), 1.97 (br s, 6H, C³H), 2.27 (d, 3J = 3 Hz, 12H, C²H₂). 13 C{ 1 H} NMR (C₆D₆, 400 MHz): δ 25.11 (*C*Me₃), 30.41 (C⁴H₂), 31.21 (*C*(*C*H₃)₃), 36.49 (C²H₂), 45.40 (CH), 82.23 (CN). IR (Nujol Mull, NaCl, cm⁻¹): 1298 (m), 1180 (m), 1163 (m), 1098 (m), 1028 (m), 974 (s), 913 (s), 819 (s), 622 (s). Anal. Calcd C₄₄H₈₄Si₂N₂O₂-Cr: C, 67.6; H, 10.9; N, 3.6. Found: C, 66.4; H, 11.7; N, 3.6. 13. $(silox)_2Cr(=N(1-Naph))_2$ (4-1-Naph). A 1 dram vial was charged with 50 mg (0.052 mmol) of 1_2 and 18 mg (0.105 mmol) of 1-azidonaphthalene. Upon introduction of 0.75 mL of C_6D_6 , vigorous bubbling occurred and the solution turned dark brown. The solution was transferred to a J-Young tube, degassed, and allowed to sit for 10 h at 23 °C. Subsequent NMR analysis revealed 1_2 and 4-1-naph in a 1:2 ratio. 1H NMR (C_6D_6 , 300 MHz): δ 1.34 (s, 27H, $C(CH_3)_3$), 6.95 (m, 1H), 7.31 (m, 2H), 7.37 (s, 1H), 7.40 (s,1H), 7.99 (d, 1H), 8.84 (d, 1H). **14.** (silox)₂Cr(=N(2-Anth))₂ (4-2-Anth). A 1 dram vial was charged with 41 mg (0.042 mmol) of $\mathbf{1}_2$ and 19 mg (0.085 mmol) of 2-azidoanthracene. Upon introduction of 0.75 mL of C_6D_6 , vigorous bubbling and a dark brown color were observed. The solution was transferred to a J-Young tube, degassed, and allowed to sit for 10 h at 23 °C. Subsequent NMR analysis revealed $\mathbf{1}_2$ and 4-2-Anth a 1:2 ratio. ¹H NMR (C_6D_6 , 300 MHz): δ 1.45 (s, 27H, C(CH₃)₃), 6.49 (d, 1H), 7.11 (d, 1H), 7.13 (d, 1H), 7.46 (d, 1H), 7.63 (dd, 1H), 7.72 (dd, 1H), 7.85 (s,1H), 7.86 (s, 1H), 8.02 (s, 1H) X-ray Crystal Structure Determinations. 1. 12. Slow evaporation of a pentane solution yielded green blocklike crystals of 12 suitable for X-ray analysis. One crystal of dimensions $0.4 \times 0.2 \times$ 0.05 mm³ was selected, coated in polyisobutylene, and placed under a 173 K nitrogen stream on the goniometer head of a Siemens SMART CCD area detector system. Preliminary diffraction data revealed an orthorhombic crystal system. A hemisphere routine was used for data collection, and the data were subsequently processed with the Bruker SAINT program to yield 15 103 reflections of which 15 103 were symmetry independent ($R_{int} = 0.0000$). The space group was determined to be Pna21 with the asymmetric unit consisting of C₁₀₆H₂₄₀O₈Si₈Cr₄. No inversion centers were detected by careful visual inspection of the packing diagrams, and an attempt to solve the structure in the centrosymmetric space group Pnma was unsuccessful. The data were corrected for absorption with SADABS, and the structure was solved by direct methods, completed by subsequent difference Fourier syntheses and refined by full-matrix least-squares procedures (SHELXTL). All nonhydrogen atoms were refined with anisotropic displacement parameters, and hydrogen atoms were included at calculated positions. The large structure contains severely disordered pentane molecules and large thermal displacement parameters of the tert-butyl methyl carbons. **2.** 1-(OCPh₂)₂. Slow evaporation of a heptane solution yielded red-purple crystals of 1-(OCPh₂)₂ suitable for X-ray analysis. One crystal of dimensions $0.5 \times 0.4 \times 0.3$ mm³ was selected, coated in polyisobutylene, and placed under a 173 K nitrogen stream on the goniometer head of a Siemens SMART CCD area detector system. Preliminary diffraction data revealed a monoclinic crystal system. A hemisphere routine was used for data collection, and the data were subsequently processed with the Bruker SAINT program to yield 3945 reflections of which 3901 were symmetry independent ($R_{\rm int}=0.0302$). The space group was determined to be C2 with the asymmetric unit consisting of $C_{25}H_{37}O_2SiCr_{0.5}$. The data were corrected for absorption with SADABS, and the structure was solved by direct methods, completed by subsequent
difference Fourier syntheses and refined by full-matrix least-squares procedures (SHELXTL). All non-hydrogen atoms were refined with anisotropic displacement parameters, and hydrogen atoms were included at calculated positions. 3. 2. Slow evaporation at -30 °C of a pentane solution of 2 yielded brown crystals suitable for X-ray analysis. One crystal of dimensions $0.35 \times 0.3 \times 0.25 \text{ mm}^3$ was selected, coated in polyisobutylene, and placed under a 173 K nitrogen stream on the goniometer head of a Siemens SMART CCD area detector system. Preliminary diffraction data revealed a monoclinic crystal system. A hemisphere routine was used for data collection, which was subsequently processed with the Bruker SAINT program to yield 16 179 reflections of which 9125 were symmetry independent (R_{int} = 0.0468). The space group was determined to be Pc with the asymmetric unit consisting of C₅₅H₈₆N₄O₂Si₂Cr. The data were corrected for absorption with SADABS. The structure was solved by direct methods, completed by subsequent difference Fourier syntheses and refined by full-matrix least-squares procedures (SHELXTL). All non-hydrogen atoms were refined with anisotropic displacement parameters, and hydrogen atoms were included at calculated positions. **4.** 3-(2,6-Ph₂-C₆H₃). Slow evaporation at -30 °C from a concentrated pentane solution gave red-brown crystals of 3-(2,6-Ph₂-C₆H₃) suitable for X-ray diffraction. A crystal was isolated, covered in polyisobutylene, and placed under a 173 K nitrogen stream on the goniometer head of a Siemens P4 SMART CCD area detector. Preliminary diffraction data revealed an orthorhombic crystal system. A hemisphere routine was used for data collection, which was subsequently processed with the Bruker SAINT program to yield 25 415 reflections of which 8358 were symmetry independent ($R_{int} = 0.0331$). The space group was determined to be P2₁2₁2₁ with the asymmetric unit consisting of C₅₅H₈₆N₄O₂Si₂Cr. The data were corrected for absorption with SADABS. The structure was solved by direct methods, completed by subsequent difference Fourier syntheses, and refined by full-matrix least-squares procedures (SHELXTL). All non-hydrogen atoms were refined with anisotropic displacement parameters and hydrogen atoms were included at calculated positions. The tert-butyl groups of one silox (Si1) were disordered, and each was treated as two units of halfoccupancy. **Magnetism of 1₂.** Magnetization of microcrystalline and powdered samples was recorded with a SQUID magnetometer (Quantum Design) at 10 kOe between 5 and 300 K. The value for the magnetic susceptibility was corrected for the underlying diamagnetic increment ($\chi_{dia} = 733 \times 10^{-6} \text{ cm}^3 \text{mol}^{-1}$) by using tabulated Pascal constants¹⁷ and the effect of the blank sample holders (gelatine capsule/straw). **Calculations.** All ab initio quantum calculations were carried out using the GAMESS package.⁶⁰ The calculations were applied to the $\mathbf{1'}_2$ system (Figure 2) using the crystallographic coordinates ⁽⁶⁰⁾ Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. J.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. J. Comput. Chem. 1993, 14, 1347–1363. #### [(tBu3SiO)Cr]2(\mu-OSitBu3)2 and Its Oxidative Cleavage of one of dimers of $\mathbf{1}_2$. The geometry of the model was modified slightly to yield C_{2v} symmetry to aid in the electronic structure analysis. Both MCSCF⁶¹ and MRMP2⁶² methods with two selections of basis sets were employed. First, the CEP-31G⁶³ effective core potential basis set on all atoms with polarization functions on oxygen atoms (Basis Set I) was employed. Second, the CEP-31G basis set with polarization f⁶⁴ and (n+1)p⁶⁵ functions on chromium and the 6-311G (d,p)66 basis set on oxygen and hydrogen atoms (Basis Sets II) was employed to assess basis set effects. For 3"- Ph, the geometries of the GS and ES were optimized starting from pseudo-trigonal geometries by using the hybrid B3LYP⁶⁷ density functional and the CEP-31G(d) basis set. Acknowledgment. We thank the National Science Foundation (CHE-0415506 (P.T.W.) and CHE-0309811 (T.R.C.)) for financial support and Prof. Karsten Meyer and Ingrid Castro Rodriguez for their time and effort in obtaining SQUID data on $\mathbf{1}_2$. **Supporting Information Available:** CIF files for 1₂, 1-(OCPh₂)₂, 2, and 3-(2,6-Ph₂-C₆H₃). This material is available free of charge via the Internet at http://pubs.acs.org. #### IC051481W ^{(61) (}a) Werner, H. J. Adv. Chem. Phys. 1987, 69, 1-62. (b) Shepard, R. Adv. Chem. Phys. 1987, 69, 63-200. ⁽⁶²⁾ Hirao, K. Chem. Phys. Lett. 1993, 201, 59-66. ^{(63) (}a) Stevens, W. J.; Basch, H.; Krauss, M. J. Chem. Phys. 1984, 81, 6026–6033. (b) Stevens, W. J.; Krauss, M.; Basch, H.; Jasien, P. G. Can. J. Chem. 1992, 70, 612-630. (c) Cundari, T. R.; Stevens, W. J. J. Chem. Phys. 1993, 98, 5555-5565. ⁽⁶⁴⁾ Frenking, G.; Ehlers, A. W.; Boehme, M.; Dapprich, S.; Gobbi, A.; Hoellwarth, A.; Jonas, V.; Koehler, K. F.; Stegmann, R.; Veldkamp, A. Chem. Phys. Lett. 1993, 208, 111-114. ⁽⁶⁵⁾ Couty, M.; Hall, M. B. J. Comput. Chem. 1996, 17, 1359-1370. ⁽⁶⁶⁾ Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. **1980**, 72, 650-654. ^{(67) (}a) Becke, A. D. J. Chem. Phys. 1993, 98, 1372-1377. (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. 1988, B37, 785-789.