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Non-Gaussian statistics of anomalous diffusion: The DNA sequences of prokaryotes
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We adopt a non-Gaussian indicator to measure the deviation from Gaussian statistics of a diffusion process
generated by dichotomous fluctuations with infinite memory. We also make analytical predictions on the
transient behavior of the non-Gaussian indicator as well as on its stationary value. We then apply this non-
Gaussian analysis to the DNA sequences of prokaryotes adopting a theoretical model where the ‘‘DNA
dynamics’’ are assumed to be determined by the statistical superposition of two independent generators of
fluctuations: a generator of fluctuations with no correlation and a generator of fluctuations with infinite corre-
lation ‘‘time.’’ We study also the influence that the finite length of the observed sequences has on the
non-Gaussian statistics of diffusion. We find that these non-Gaussian effects are blurred by the joint action of
short-range fluctuation and sequence truncation. Nevertheless, under proper conditions, fulfilled by all the
DNA sequences of prokaryotes that have been examined, a non-Gaussian signature remains to signal the
correlated nature of the driving process.@S1063-651X~98!11009-7#

PACS number~s!: 87.10.1e, 05.40.1j, 33.15.Vb
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I. INTRODUCTION

The pioneer work of Rahman@1# on liquid argon contains
among many interesting statistical properties, the numer
evaluation of a non-Gaussian indicator, whose o
dimensional version would read

s~ t ![
^x4~ t !&

3^x2&2
21. ~1!

Rahman found that the intensity of this non-Gaussian in
cator vanishes on the initial condition, grows with increas
time, reaches a maximum, and then makes a slow regres
to zero fort tending to infinity.

Is the result found by Rahman universal? To address
issue we consider another example, derived again f
molecular-dynamics simulation, but concerning the mu
more complex case of binary alloys quenched into gla
states. This is the more recent work by Miyagawa and
watari @2#. These authors find that in the glassy state
non-Gaussian indicators(t) after reaching a maximum
shows no sign of regressing to zero. There is a striking
ference, therefore, with the earlier result of Rahman@1#. No-
tice that the former case@1# is an example of non-Gaussia
behavior of a dynamical system with a time scale separa
between the macroscopic and the microscopic regi
whereas the latter@2# is the non-Gaussian behavior of a d
namical system with no time scale separation. In this pa
we explore the consequence of this lack of time scale se
ration using a simple model and the results obtained
shown to result in non-Gaussian effects even more inte
than those found in quenched glasses@2#.

What are the origins of non-Gaussian properties? Acco
ing to the perspective afforded by the general discussion
Ref. @3#, non-Gaussianicity is a consequence of microsco
nonlinearity and, at the same time, of memory, namely, of
PRE 581063-651X/98/58~3!/3640~9!/$15.00
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incomplete time scale separation between the ‘‘mac
scopic’’ diffusing variable and microscopic dynamics. A
cording to Ref.@3#, we must imagine that there exist tw
levels: the macroscopic and the microscopic. For any rand
phenomenon of interest there exists a variable respons
for its fluctuations that is closer to the microscopic level th
the variable being measured. For instance, the microsc
variable related to the measured position of a Brownian p
ticle is the velocity. The microscopic variable correspondi
to the measured velocity is the acceleration and so on.

For any step closer to the microscopic level the nonlin
nature of dynamics becomes more significant. Moving in
reverse direction, from the microscopic to the macrosco
level, we see a suppression of the effects of nonlinear
Thus, if we move from the level of acceleration to that
velocity, the suppression of microscopic nonlinearity
quantified by the formula@3#

G}VWg3. ~2!

Here G represents the strength of the nonlinearity on
velocity level,V denotes the frequency of oscillation of th
tagged particle in the cage of the surrounding particles,
W defines the strength of the microscopic nonlineari
namely, that of the level next to the velocity level, which
the temperature-dependent harmonic strength of the pote
within which the particle of interest oscillates. The parame
g defines the strength of the memory

g[
V

G
, ~3!

where 1/G denotes the relaxation time of the center of t
cage.

This theoretical prediction suggests that the strength
nonlinearity, and thus of non-Gaussian behavior, transmi
3640 © 1998 The American Physical Society
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PRE 58 3641NON-GAUSSIAN STATISTICS OF ANOMALOUS . . .
from a given level to the next level closer to the macrosco
world, becomes larger and larger with increasing memory
the case of an infinitely long memory, the non-Gaussian
dicator given by Eq.~1!, as we shall see, becomes infinite
large, thereby implying technical problems in recording
For this reason, we adopt another form of non-Gaussian
dicator

h~ t ![123
^x2~ t !&2

^x4~ t !&
, ~4!

which is related to Rahman’s indicator by

s~ t !5
h~ t !

12h~ t !
. ~5!

In Sec. II we shall see that in the case of infinite memo
h(t) tends to the value of 1 and sos(t) tends to infinity.
Thus we find it more convenient to use the kurtosish(t)
rather than Rahman’s measure of non-Gaussianicitys(t).

The meaning of this result is that the infinite memory o
dichotomous fluctuation results in an infinite non-Gauss
strength~if Rahman’s indicator is adopted!. The DNA se-
quences offer an interesting example of dichotomous fluc
tions with infinite memory. However, the DNA sequenc
are truncatedsingle trajectories and this is a reason why
Sec. III we discuss the influence exerted on non-Gaus
statistics by the finite length of the sequences under inve
gation. The long-range correlations of prokaryotes are a
perturbed by uncorrelated fluctuations and for this reason
devote Sec. IV to the study of the effects produced on n
Gaussian statistics by the joint action of short-range fluct
tions and of the finite length of the sequences under stu

Section V is devoted to establishing the statistical sign
cance of the results obtained in this paper. The conten
this section aims at the very important purpose of explain
why the generalization of the earlier work of Ref.@3#, which
in turn is an extension of that of Rahman, finds a use
application in the field of DNA sequences.

II. THEORY FOR THE CASE OF INFINITE MEMORY

In this paper we go beyond the limits of the time-sca
separation with a specific picture in mind where the mac
scopic variable is thepositionand the corresponding micro
scopic variable is thevelocity. In the case of DNA sequence
this means position and velocity in the sense specified in S
IV. Let us examine a microscopic condition where the d
parture from Gaussianicity is as large as possible and s
how these statistics are transmitted to the next level, close
the macroscopic world, in the specific case when there is
time-scale separation between levels. With this ideal con
tion in mind we study the diffusion process

ẋ5j~ t !, ~6!

wherex is the position variable andj is a dichotomous sto
chastic process, namely, a stochastic velocity variable w
only two possible values6W. The two values are set equal
probable to make the diffusion process unbiased. The ch
of a dichotomous fluctuation means that the ‘‘microscopi
c
n
-

.
n-

y

n

a-

an
ti-
o
e
-
-
.
-
of
g

l

-

c.
-
dy
to
o
i-

th

ce
’

dynamics is strongly non-Gaussian and the equilibrium va
of the corresponding kurtosis is

hj
eq5123

^j2&2

^j4&
5123

W4

W4
522. ~7!

This is the measure of the microscopic statistics~MICROS!
of the system. We want to explore the case of infin
memory, so we must make a proper choice of the autoco
lation function

Fj~ t ![
^j~0!j~ t !&

^j2&
. ~8!

A convenient choice is

Fj~ t !5
A

~A1/b1t !b
, ~9!

with the power-law index in the interval

0,b,1. ~10!

This choice makes the autocorrelation function nonintegra
or, equivalently, the microscopic time scale become infin
while fulfilling the normalization constraintFj(0)51.

We now assess the statistical properties of the variablx.
It has been shown@4# that the corresponding diffusion pro
cess becomes equivalent to a truncated Le´vy process,
namely, a process whose distribution function is describ
by a Lévy distribution whose tails have been eliminate
This is a diffusion process with a finite propagation fron
The probability distribution at distancesuxu.Wt vanishes
and the population of the missing tail concentrates on
front thereby results in two peaks. A very accurate repres
tation of the probability distributionP(x,t) is given by

P~x,t !5PL~x,t !Q~Wt2uxu!1
Fj~ t !

2
d~Wt2uxu!,

~11!

whereQ is the Heaviside step function,d is the Dirac delta
function, PL(x,t) is the inverse Fourier transform of

P̂L~k,t !5e2bukub11t, ~12!

and the parameterb is defined in terms of the parameters
the fluctuation process as

b[
pb~b11!AWb11

2sinS p~b11!

2 DG~b12!

. ~13!

Equation ~11! is the macroscopic statistics~MACROS! of
the system:P(x,t) is not Gaussian as a consequence of
lack of a finite microscopic time scale.

This picture makes it possible to solve the problem of
time evolution of the kurtosish(t). From Eq.~11! we imme-
diately find
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^x2n~ t !&5E
2Wt

1Wt

x2nPL~x,t !dx1t2nFj~ t !. ~14!

In the time asymptotic limit, from Eq.~9!, we obtain

Fj~ t !.At2b. ~15!

Using the time asymptotic properties of the Le´vy distribu-
tions @5#, we obtain, using Eqs.~12! and ~13! and setting
W51,

PL~x,t !.
ct

uxub12
, ~16!

with c given by

c5
Ab~b11!

2
. ~17!

Thus, from Eq.~14! we obtain the approximated expre
sions

^x2~ t !&.S A1
2c

12b D t22b ~18!

and

^x4~ t !&.S A1
2c

32b D t42b. ~19!

As a consequence, we make the following prediction for
kurtosis in the time-asymptotic limit:

h~ t !.12cht2b, ~20!

with

ch[

3S A1
2c

12b D 2

S A1
2c

32b D . ~21!

In conclusion, using the theory of@4#, we predict the long-
time limit kurtosis when the physical condition~10! applies,
namely, in the case of infinite memory. On the other ha
we know that the initial value of the kurtosis must be22,
because at very short times the statistics ofx are dictated by
j and this variable in turn must fulfill the condition~7!. As-
suming that the time evolution of the kurtosis does not
dergo any abrupt change, we conclude that the kurtosis
creases from the initial value of22 and, monotonically
increasing, tends to the time asymptotic value of 1. We n
that the resulting behavior is reminiscent of Ref.@2#, thereby
suggesting that the lack of a time scale separation provo
the breakdown of the regression of the kurtosis to 0, nam
to the Gaussian behavior, and that, eventually, with incre
ing time, stationary non-Gaussian statistics are reached.

We note from Eq.~20! that the process of transition to th
non-Gaussian regime predicted by the model of Ref.@4# be-
comes slower and slower asb approaches 0. This slowin
down implies that the strongly non-Gaussian MICRO
change slowly into the MACROS and, coming closer to t
e

,

-
n-

te

es
y,
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e

limiting case ofb50, the transition becomes so slow as
never depart from the initial dichotomous statistics. This
expected on the basis of the following simple argument:
know that atb50 the resulting diffusion process is esse
tially ballistic, thereby implying

^x2~ t !&5W2t2 ~22!

and

^x4~ t !&5W4t4, ~23!

so that, consequently,

h~ t !.22. ~24!

What about the caseb.1? In this case a finite micro
scopic time scale is recovered since the time integral of
correlation function is finite. Consequently, we expect th
the standard condition detected by Rahman years ago@1# is
recovered. After a transient regime, corresponding to a t
scale where the process of molecular collisions can be
ceived, the system must reach the regime of conventio
diffusion, thereby implying that the Gaussian statistics is
covered, with kurtosish(t)50.

To check the validity of these theoretical predictions w
made a numerical calculation based on the average ov
large number of trajectories derived from a very extend
single trajectory, which in turn is generated by means o
stochastic generator@4#. The method used in@4# is essen-
tially a method to produce a dichotomous fluctuationj with
a stationary correlation function corresponding to that of E
~9!. The adoption of a deterministic generator@6–8# produc-
ing the same stationary correlation function would lead to
same result: The advantage of using the stochastic gene
is mainly due to the higher computational accuracy a
speed. Note that the distinct trajectories, on which the av
aging is carried out, are derived from the single but exten
trajectory, shifting the initial condition. This method, in prin
ciple, aims at realizing an ensemble virtually equivalent to
equilibrium Gibbs ensemble@7#.

The results of this numerical calculation are illustrated
Fig. 1, which refers to the time evolution ofc(t)[12h(t)
as well as ofh(t). Note that the results of the cases~a!, ~b!,
and ~c! of Fig. 1, corresponding to three distinct values
b,1, are in a good qualitative agreement with the predict
of Eq. ~20!. The results of Fig. 1~d!, with b51.5, show the
regression to the Gaussian statistics, corresponding to
prediction of the pioneer work of Rahman@1#. We see that
before regressing to the prediction of Gaussian statistics
kurtosis overshoots the valueh(t)50. This overshooting re-
sults in a pronounced maximum, and the birth of a ma
mum, as we shall see, is an interesting property produ
also by the finite length of the explored sequences. To es
lish the significance of this latter property, however, it
necessary to go through a deeper discussion of the me
adopted to derive a Gibbs ensemble from a single seque
This will be discussed in Sec. III.

What about the quantitative agreement between the
and numerical experiments? We point out that at short tim
and at low values ofb, typically for values up to the order o
0.5, the quantitative agreement between theory and num
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cal calculations is very good. The agreement becomes w
at large values ofb, typically those of the order of 0.75. Thi
discrepancy is caused by the fact that the theoretical pre
tion is asymptotic in time, whereas it takes a certain amo
of time for the system to reach the asymptotic regime. T
time is estimated as the time it takes the correlation func
~9! to reach a time regime where its dependence on time
genuine inverse power law. The resulting value

t tr}A1/bb1/~b11! ~25!

quantifies how long it takes the correlation function to b
come an inverse power law. Consequently, in the rang
,b,1, the decrease ofb produces a faster transition to th
time-asymptotic regime, thereby making it possible to ful
the prediction~20! within the explored time range.

It has to be pointed out that the rule according to wh
the agreement between theoretical prediction and nume
results is improved with the smaller values ofb is not com-
pletely true. In fact, with decreasingb another important
property has to be taken into account. The lower the valu
b, the more persistent the presence of ballistic peaks. A
isfactory numerical treatment would imply a significant i
crease of the number of systems in the Gibbs ensembl
this is kept fixed, the statistical inaccuracy becomes lar

FIG. 1. Time evolution of the non-Gaussian indicator.~a! The
value ofc(t)[12h(t). h and thereforec are dimensionless vari
ables. The calculation was made by adopting a stochastic gene
@4# (t is the number of iterations of the generator! resulting in the
correlation function~9! with A'0.5. The dotted straight line is
guideline indicating the theoretical slope2b, with b50.25. The
sequence lengthsT are as follows:T533106 ~dashed line!, T
5107 ~dot-dashed line!, and T523107 ~solid line!. ~b! Same as
~a!, but with b50.5, A'0.25, andT5106 ~dashed line!, T53
3106 ~dot-dashed line!, and T5107 ~solid line!. ~c! Same as~a!,
but with b50.75, A'0.2, andT5106 ~dashed line!, T523106

~dot-dashed line!, and T5107 ~solid line!. ~d! Time evolution of
h(t). Hereb51.5,A'0.1, and the sequence lengths are as follo
T5107 ~dashed line!, T523107 ~dot-dashed line!, and T56
3107 ~solid line!. Notice that in all the cases the dot-dashed lin
clearly visible only in cases~c! and ~d!, refer to an intermediate
case, with a statistics of intermediate accuracy. In cases~a! and~b!
the dot-dashed lines virtually overlap the dashed lines.
se
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and larger with the decrease ofb. As a consequence, the be
agreement between theory and numerical treatmen
reached at intermediate values ofb. In fact, we see that the
caseb50.5 of Fig. 1~b! yields an agreement between theo
and numerical treatment much better than atb50.25 @Fig.
1~a!# as well as atb50.75 @Fig. 1~c!#. Notice that the statis-
tical analysis is made on sequences of finite length accord
to the procedure described in Sec. III. The correspond
numerical results, illustrated in Fig. 1, provide significa
signs of this tendency: The longer the sequence lengthT and
consequently the more accurate the statistics available,
better the agreement between theoretical predictions and
merical results.

III. FINITE-SIZE-INDUCED REGRESSION
TO GAUSSIAN BEHAVIOR

The qualitative discussion of Sec. IV refers to the sta
tical analysis of DNA sequences. As we shall see, a D
sequence can be imagined as a time series and the leng
this sequence is finite. To prepare the ground for the disc
sion of Sec. IV let us consider the case when the fluctua
variablej(t) is observed at the discrete timest i and the time
interval ist i 112t i51. It must be pointed out that the calcu
lation illustrated earlier refers precisely to this condition a
that the adoption of the continuous-time representation
been an idealization made possible by the fact that we
interested in the long-time limit. To make the earlier stat
tical analysis we used the possibility of computer generat
practically infinitely many and infinitely extended sequenc
$j (r )(t i)%. Ideally a single sequence is obtained keepingr
fixed and movingi from 1 to infinity. Changing from one
givenr to a differentr 8 is equivalent to moving from a given
system to another system of the Gibbs ensemble. There
$j (r )(t i)% can be interpreted as a mathematical notation
fining this Gibbs ensemble. Since this set consists of i
nitely many sequences and the length of any sequenc
infinite, we shall refer to it as ideal Gibbs ensemble~IGE!.

Now let us select one of these infinitely many sequen
and truncate it at a given timeT. We denote this single
truncated sequence with the name of sample sequence~SS!.
The challenging problem is now that of deducing the sta
tics of the IGE from the analysis of the SS. In principle, it
possible to derive from the SS a sort of simulation of t
IGE. This is done as follows. The first system of the Gib
ensemble is the SS itself. The second is a new seque
derived from the SS by shifting the time origin fromt1 to t2.
Thenth trajectory is obtained shifting the time origin fromt1
to tn and so on. Let us refer to this as the effective Gib
ensemble~EGE!.

It is evident that forT→` there should be no essenti
difference between the EGE and the IGE. This would ma
redundant the adoption of the superscriptr to define the
Gibbs ensemble: A single sequence would contain the s
statistical information as that afforded by any other traject
of the ensemble. Furthermore, it is evident that in the cas
ordinary diffusion the adoption of the EGE rather than of t
IGE would not affect the statistical analysis. In fact, wh
the autocorrelation of Eq.~9! has a finite lifetimet @9# and
T@t the adoption of the EGE rather than the IGE does
produce any significant deviation from the original statistic

tor
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behavior. This is no longer expected to be the case when
power-law index is in the interval~10! wheret5`. In this
case, although the assumption of an equilibrium invari
measure is made, it takes an infinitely long time for the s
tem to regress to equilibrium. Consequently, we expect
the adoption of the EGE might produce a significant dep
ture from the statistics of the IGE for any finite length of t
SS: This length, in fact, cannot be as large as the correla
time t, which is infinite in this case.

We are not aware of any theoretical treatment of this d
ficult issue, except for a work of Penget al. @10# in which a
detailed discussion is made of the uncertainty affecting
local anomalous rescaling indexH(t) as a finite-size effect
We notice that that work rests on assuming the variablej to
be a correlated Gaussian noise, thereby implying no de
tion from a Gaussian MACROS. Therefore, we cannot ap
that analysis to the case under discussion in this paper.

As regards the discussion of this issue in the present c
we essentially rest on computer simulation. A DNA s
quence is a single truncated trajectory. However, within
theoretical perspective adopted in Ref.@11# this single trajec-
tory is assumed to have the same statistical propertie
those of a trajectory generated by a set of deterministic n
linear equations corresponding to a condition of weak ch
~or, equivalently, to a stochastic generator of long-range c
relations@4#!. Thus we can produce as many SS’s as we n
to establish to what extent the departure of the EGE statis
from the IGE statistics depends on the SS considered.
consider 1000 independent truncated trajectories. We as
ate each SS with its own EGE and thus to its ownh(t). We
find a distribution of these curvesh(t) and consequently we
are led to define the mean value^h(t)&. In addition to the
mean value we also evaluate the standard deviationDh(t)
[@^h2(t)&2^h(t)&2#1/2, which measures the spreadin
about the mean value and thus the ‘‘error’’ affecting t
evaluation ofh(t).

On the basis of the calculations illustrated in Fig. 2,
well as of others that are not reported here for the sake
brevity, we reach the following conclusion. For any fini
lengthT we generate a kind of bent ‘‘sausage’’ of the sam
type as that illustrated in Fig. 2. The width of the sausa
2Dh(t) and the time at which the sausage reaches its m
mum level depend onT. The larger theT the thinner the
resulting sausage and the longer the time at which the m
mum value is reached. In Fig. 2 we denote by the dashed
the result of the same analysis applied to a sequence o
large length as to provide results virtually equivalent to tho
corresponding to the IGE and so a sausage with virtual
vanishing width and a maximum at infinite time. We s
from Fig. 2 that at short times the sausage width is very t
and the mean valuêh(t)& coincides with the dashed curve
At later times the sausage width increases, thereby makin
possible for the single constituents of the sausage to sig
cantly depart from the mean value^h(t)&. However, it is
also evident that the single constituents of the average v
^h(t)& with high probability move within the sausage. W
note from Figs. 2~b! and 2~c! that the whole sausage, afte
crossing the real axis at short times, and not only the m
value ^h(t)&, departs from the abscissa axis. After a fin
time interval, which we denote as anon-Gaussian window,
the sausage tends to include also the abscissa axis. O
he
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basis of these properties we are led to conclude that mos
the single constituents of the sausage are expected to s
the same behavior, namely, a growth to a maximum va
above the Gaussian level~the abscissa axis!, followed by a
regression to zero: a behavior reminiscent of that correspo
ing to b.1 @see Fig. 1~d!#.

To some extent the effect found numerically in this pap
on the influence of the truncation at the timeT on the statis-
tics of diffusion process, is similar to the influence that
external fluctuation of intensityD has on the statistics o
dichotomous fluctuations with the correlation function~9!.
This problem has been discussed in earlier work of our gr
@12,13#. It has been shown that, as an effect of the perturb
noise, at a given timetc , a crossover takes place from th
slow decay regime to a faster, exponential-like, decay
gime. The crossover timetc is proportional toD2a, wherea
is an index of the order of unity. If the kurtosis of thes
processes were observed, the resulting behavior would
similar to that produced byb.1 @see Fig. 1~d!#. On the basis
of the numerical results we are inclined to believe that
effect of using a finite sequence may be equivalent to in
ducing a disturbance of intensityD} f (1/T), where the func-
tion f (1/T) is a slowly increasing function of its argumen
In other words, increasingT might have the effect of making
the disturbance weaker. Note that in@12,13# an average over
the natural Gibbs system was made, thereby producing si
mean values rather than a set of distinct mean values.

It is evident that if the sausage is not thin enough it is n
possible to conclude that all the SS’s will produce a kurto
with a maximum and a regression to Gaussian statis
within the observation time. The bump is produced by t

FIG. 2. Mean kurtosiŝ h& as a function of time, over an en
semble of 1000 EGE’s resulting from 1000 independent single
quences of finite lengthT. The dotted line denotes the Gaussi
level ^h(t)&50. ~a! T510 000. In addition to the mean kurtosi
denoted by the thick line resulting from a dense sequence of
monds, we also plot the error bars~defining the width of the sau-
sage mentioned in the text!. The dashed line is the mean kurtosis
a single sequence withT5107. This case is expected to be a goo
realization of the IGE, with a virtually vanishing error bar.~b! Same
as~a!, but with T550 000. For the sake of clarity we plot only th
upper and bottom values of the error bars, thus producing the
solid lines around the mean kurtosis.~c! Same as~b!, but with a
logarithmic rather than linear time axis. The calculation was ma
by adopting a stochastic generator@4# resulting in the correlation
function ~9! with A'0.025 andb50.5.
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kurtosis overshooting the Gaussian plateau and regressin
it after a given time. Thus it corresponds to a window
finite size within which the non-Gaussian nature of the o
served process becomes ostensible. In other words, if
non-Gaussian window is not ostensible, the observation
truncated sequences might generate the false impression
the statistics are Gaussian, in conflict with the detection
long-range correlation and with the observation@4# that in
such a case the statistics of the resulting diffusion proc
cannot be Gaussian. It is also convenient to notice that
length of the DNA sequences that are analyzed in the n
section is of the same order as that corresponding to the
of the non-Gaussian window in Fig. 2.

IV. NON-GAUSSIAN STATISTICS OF DNA SEQUENCES
OF PROKARYOTES

The statistical analysis of DNA sequences is carried
assigning the valuej521 to purines andj51 to pyrim-
idines @14,15# or vice versa@11#. Then the DNA sequence
are conceived as the generators of fluctuations of the
chotomous variablej. After adopting this prescription the
‘‘dynamics’’ of DNA sequences become equivalent to t
diffusion process generated by

x~N!5 (
n51

N

j i . ~26!

The i th position along the sequence can be thought of a
discrete time in a random walk process. Consequently,x(N)
can be regarded as being the position of a random walke
the discrete timeN. If the sequence is very long, we ado
the continuous-time representation of Eq.~6!, and conse-
quently we can use the results of Sec. II to analyze the n
Gaussian properties of DNA sequences.

The results of some earlier investigations in this fie
@14,15,11,16–19# established the existence of long-ran
correlations, excluding the possibility that the paradigm
ordinary Brownian motions is the correct one to account
DNA statistics. Neither is the paradigm of fractional Brow
ian motion. In fact, as shown in@4#, a dichotomous fluctua
tion with long-range correlations results in a distinctly no
Gaussian diffusion process: a truncated Le´vy process@4#.
The observation made by Arneodoet al. @20# that the diffu-
sion statistics in eukaryotes are essentially Gaussian in s
of the existence of long-range correlations forced the auth
of this paper to develop a folding model that has the effec
decoupling statistics from dynamics@21#. This means that
statistics can be produced by a source distinct from that
sponsible for the long-range fluctuations, thereby explain
why the diffusion process can be approximately Gaussia
spite of the existence of long-range correlations.

As far as the prokaryotes are concerned, different con
tions apply and these, as we shall see, make it possib
detect non-Gaussian statistics. Before addressing this is
let us summarize the conclusions reached in literature on
DNA sequences of prokaryotes. Two groups have indep
dently developed two seemingly distinct models, which, n
ertheless turn out to be equivalent from a statistical vie
point. Let us mention the earlier model first. In a rece
paper, to interpret the long-range correlation in noncod
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DNA, Buldyrev et al. @22# have adopted a generalization
the Lévy walk proposed in an earlier paper by Araujioet al.
@23#. The process is realized as follows: At thej th step a
random walker, in the case of an ordinary Le´vy walk, makes
a jump of sizel j forward or backward. Essentially the sam
result, except for the birth of a propagation front signaled
the presence of peaks@4#, is obtained by assuming that th
walker makes, in a timet j , l j steps in the same direction
Both of these assumptions would conflict with the idea
having no correlations at short distances. For this reason,
recent paper Buldyrevet al. @22# assumed that a walker take
each ofl j steps in random directions, with a fixed bias pro
ability

P15
11e j

2
~27!

to go forward and

P25
12e j

2
~28!

to go backward, where« j assumes the value1« or 2«
randomly. We shall refer to this as the generalized Le´vy
walk ~GLW!.

Allegrini et al. @11,19# have used a model that they calle
copying mistake map~CMM!. The CMM assumes that th
DNA sequence results from the randomly joint action of tw
different prescriptions, one responsible for the long-ran
correlations and the other of an uncorrelated random nat
The probability of constructing the sequence with t
correlations-generating prescription ispc and the probability
of constructing the sequence with the random law is
2pc . The equivalence of the CMM and GLW is made ev
dent by noticing that if the CMM is adopted the probabiliti
of going forward and backward are

P15
16pc

2
, ~29!

P25
17pc

2
, ~30!

respectively, thereby implying thate is identified withpc .
It is straightforward to show@21# that

Fj~ t !5~12pc
2!Fj̃~ t !1pc

2Fe~ t !, ~31!

whereFj̃(t) is the correlation function of the fast fluctua
tions ~a d function! andFe(t) is the long-range correlation
of the biase(t). It is equally straightforward@11# to show
that Eq. ~31! yields an expression of the second-mome
time evolution, which is the superposition of a term linear
time, corresponding to the prediction of ordinary Browni
motion, and of a term faster than linear, corresponding to
anomalous diffusion. This means that the short-time dyna
ics is dominated by ordinary diffusion, while the long-tim
dynamics, if the DNA sequence is sufficiently large as
make this observation possible, is dominated by anoma
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diffusion @11#. In other words, this model results in diffusio
processes that are indistinguishable from standard Brow
motion at short times and are expected to exhibit anoma
diffusion at long times.

What about the time evolution of the kurtosish(t) in this
case? Figure 3 gives a satisfactory answer to this ques
We see, in fact, that whenpc is so large as to have a DNA
sequence dominated by the prescription with long-range
relation,h(t) steadily increases fromh(1)522 towards the
value 1. However, before reaching this maximum no
Gaussian value, the finite-sequence effect emerges unde
form of a regression to the Gaussian statistics. At sma
values ofpc , another interesting effect appears. The sho
time increase ofh(t) becomes much faster, a sort of temp
rary Gaussian plateau is reached, and then the kurtosis re
ers the same behavior as that corresponding to higher va
of pc .

The qualitative explanation of this seemingly complex b
havior is straightforward: At short times the time evolutio
of the kurtosis is dominated by ordinary Brownian diffusio
Consequently, a fast transition to the Gaussian level ta
place. Upon further passage of time, as noticed earlier,
effect of long-range correlations becomes predominant
the kurtosis leaves the Gaussian plateau and ‘‘tries’’ to re
the plateau corresponding to truncated Le´vy statistics. This is
prevented from occurring by the fact that the sequenc
finite and in fact, at later times, a regression to a Gaus
MACROS takes place. This behavior leaves a signature~a
bump on the Gaussian level! of the kurtosis evolution curve
Of course, in the limiting casepc50, only ordinary Brown-
ian diffusion would be present and no departure from Gau
ian statistics would take place.

In other words, at short times the non-Gaussian proper
are overcome by the uncorrelated fluctuations and at l
times by the finite-sequence effects. The bump represen
different kind of non-Gaussian window@24#, through which
one can perceive the statistics that would show up in
ideal case of no perturbation.

What about real DNA sequences of prokaryotes? The
swer to this question is given by Fig. 4, which shows tw

FIG. 3. Functionh(t) for different realizations of the CMM,
with different values of pc : pc51 (1), pc50.5 (3), pc

50.2 (*), and pc50.002 (h). Here T5106. The parametersA
andb are the same as those of@11#. This means thatb50.67.A can
be derived from the numerical approach to the correlation func
of Eq. ~9! and turns out to be;10.
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examples of real DNA sequences. The striking discovery
that of an impressive similarity between the non-Gauss
window of the real DNA sequences and that of the artific
DNA sequences generated by the CMM. The agreemen
good at both the qualitative and quantitative levels. On
basis of the theoretical discussion of Sec. II, we can a
express this result in a slightly different form. The debate
the existence or nonexistence of long-range correlation
DNA sequences is obscured in part by the fact that the n
Gaussian statistics of the diffusion process resulting from
long-range correlations is blurred by the truncation of t
sequences. As we have seen, if the width of the sausag
too large, a large portion of its constituents might not res
in a ‘‘plateau plus bump’’ signature. The fact that the majo
ity of the DNA sequences of prokaryotes examined by
~the longest ones available! results in this effect suggests th
the DNA sequences of prokaryotes can be regarded as
single constituents of an ‘‘ideal sausage’’ whose width
small enough to force all its constituents to exhibit the sa
plateau plus bump signature.

n

FIG. 4. Time evolution of the non-Gaussian indicatorh(t).
~a! The complete genome of the human Cytomegalovi
~HEHCMVCG! (1) and the CMM sequence (3). The two se-
quences share the lengthT5229 354. The lengthT of the DNA
sequence is the number of nucleotides in each of the two stra
@base pairs~bps!#. The CMM sequence is given the parameterpc

51/9, which is the same value as that adopted in Ref.@11# to fit
different statistical properties of the same DNA sequence.~b! Seg-
ment of Escherichia Coli~ECOTSF! (1) and the CMM sequence
(3). The two sequences share the lengthT591 430 bps. The
CMM sequence is given the parameterpc51/10.
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V. STATISTICAL, PHYSICAL,
AND BIOLOGICAL MEANING

AND IMPORTANCE OF THE RESULTS OBTAINED

This paper yields some interesting additions to the rec
discoveries on the long-range correlations in DNA sequen
by solving a problem of interest for diffusion processes
condensed matter@3#. Let us see why. First of all, we not
that according to Ref.@3#, a close connection exists betwee
memory and non-Gaussian statistics at the macrosc
level. We know from@3# that if a finite microscopic time
scale exists, the non-Gaussian effects at the macrosc
level can only be temporary and Gaussian statistics are
covered when the stationary regime is reached. We can p
ably persuade the reader, who may not have the time to
through the theoretical arguments of Ref.@3#, to accept the
golden rule of Eq.~2! by remarking that this is nothing bu
another manifestation of the celebrated central limit theor
@25#.

This perspective is challenged by the phenomenon of
perdiffusion, namely, a diffusion faster than ordinary Brow
ian diffusion, invoked to account for the statistical propert
of the DNA sequences with long-range correlatio
@10,11,14–22#. This is so because a diffusion process wh
the second moment of the diffusing variable increases
time more quickly than in the case of ordinary Browni
motion ~see, for example, Ref.@4#! implies a fluctuation with
an infinite correlation time. According to the perspective
Ref. @3#, the resulting non-Gaussian effect should be infin
as well. This paper establishes in Sec. II that it is precis
so. This is so much so that the conventional Rahman n
Gaussian indicator, applied to the diffusion process gen
ated by a dichotomous fluctuation with the correlation fun
tion of Eq. ~9!, would diverge in the time asymptotic limit
For this reason we have been forced to adopt the n
Gaussian indicator of Eq.~4!.

Not only do we establish that the non-Gaussianicity
comes infinite, we also discover how this unusual condit
is reached in time. This is given by the analytical predicti
of Eq. ~20!, which is qualitatively corroborated by numeric
results. We also explain why there are significant quant
tive deviations of the numerical results from the theoreti
prediction.

All this has to be regarded as the first important result
this paper. It has been made possible by the adoption of
theory of Ref. @4#, which in turn addresses the importa
issue of how to derive Le´vy statistics, a diffusion proces
with infinite moments, from within a treatment based on t
numerical determination of moments. The wise use of
information provided by the Le´vy statistics is made possibl
by the fact that the process under observation is essentia
truncated Le´vy process.

The difficulty for the reader to overcome to appreciate
significance of the second result of this paper is that of lo
ing at the DNA sequences as dichotomous time fluctuat
according to the perspective established by Ref.@15#. The
position of a site along the DNA has to be identified w
time and the value assigned to a given site~either21 or 11,
according to whether the site is occupied by a purine o
pyrimidine! is the value of the fluctuation at that time.

Once this correspondence is established and the due
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erence to the literature establishing that this is a superdi
sional process@10,11,14–22# is made, the reader can easi
understand that the natural question is raised of whethe
not this diffusion process is also non-Gaussian. Unfor
nately, even if there is a widely accepted conviction that
study of DNA sequences is equivalent to that of anomal
diffusion processes of condensed matter, a link between
subject and that of Ref.@3#, it is well known that these se
quences are finite. Furthermore, any DNA sequence i
single trajectory and no recourse can be made to the con
of Gibbs ensemble. It is possible to derive a sort of effect
Gibbs ensemble from a DNA sequence, conceived as a si
trajectory, by using different sites as departure points of a
of new trajectories. This way of generating a Gibbs e
semble, however, produces results that are strongly in
enced by the finite length of the DNA sequence if the DN
sequence is characterized by an infinite correlation ‘‘time
This is the main reason why the non-Gaussian indicator c
not reach its maximum value and a sort of regression
Gaussian statistics is produced.

This is the second important result of this paper. To co
vince the reader that it is really important, we have to est
lish to what extent the detection of this maximum as
method of statistical analysis of a single and finite seque
is reliable. To do that we generated 1000 independent
quences by means of the stochastic generator that, acco
to the earlier work@4#, results in superdiffusion. It is a plau
sible conjecture to imagine the kurtosis time evolution to
a fluctuating function of the finite sequence considered. T
raises a legitimate doubt on the general validity of the sec
result of this paper, expressed by the following question:
these fluctuations allow a single and finite sequence to p
duce a kurtosis time evolution without the non-Gauss
bump? It is evident that an affirmative answer to this qu
tion would make questionable the adoption of our method
stastistical analysis. The second result of this paper is th
fore made really important by the discovery, made in S
III, that each and every sequence, with a sufficiently la
length, must be characterized by a non-Gaussian wind
This is proved by Figs. 2~b! and 2~c!, showing that the whole
‘‘sausage,’’ and so all the single trajectories contributing
the sausage width, distinctly departs from the Gaussian
teau within a finite time interval. This means that each a
every single sequence, produced by the same stochastic
erator, with the same length as those studied in Sec. III~the
DNA sequences examined in Sec. IV have the same len!
are expected to result in a non-Gaussian window if th
correlation length is infinite.

Finally, Sec. IV illustrates the third result of this pape
This last result, as far as the project of a technique of sta
tical analysis of DNA sequences is concerned, is the m
result of this paper. Adopting as an artificial DNA sequen
that generated by the theoretical model developed by u
our earlier work@11,19#, the CMM model, we make abou
the time evolution of the non-Gaussian indicator the follo
ing predictions. The non-Gaussian indicator is expected
increase very quickly from the initial value of22 to the
vanishing value of the Gaussian plateau. We also expect
after a temporary stay in this Gaussian plateau a transitio
the bump regime occurs. This means a further increase o
non-Gaussian indicator with a regression to a vanish



hin
fa
e-
s
a
o
on
n-
or
m
er

d
Dr.
of
llo
al

3648 PRE 58ALLEGRINI, BUIATTI, GRIGOLINI, AND WEST
value that prevents the non-Gaussian indicator from reac
the top value of 1. All these expectations have been satis
torily confirmed by our statistical analysis of real DNA s
quences of prokaryotes, with a quantitative as well a
qualitative agreement between the theoretical predictions
the results of the analysis of real data. Therefore, we c
clude this paper by pointing out that the original convicti
@11# that the CMM is a good model for prokaryotes is co
firmed beyond the original expectation. To reach this imp
tant result we had to solve many other subsidiary proble
each of which is of interest by itself, concerning the gen
,

in
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s
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alization of the Rahman’s pioneer work@1# to the case of
infinite memory.
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