Supporting Faculty Scholarly Activity

Mark Phillips
UNT Libraries – Digital Libraries Division
Digital library infrastructure as a major component in supporting faculty research and scholarship.
Jean-Baptiste Lully Collection

The UNT Music Library's Jean-Baptiste Lully Collection includes almost thirty rare 17th- and 18th-century scores of operas and ballets by the 17th-century French composer Jean-Baptiste Lully and his sons. Many of the volumes are first editions and several are second editions. The collection also contains manuscript copies of operas and one ballet that were probably offered for sale at performances.

Featured Partner

Elm Fork Natural Heritage Museum

The Elm Fork Natural Heritage Museum furnishes opportunities to discover and share knowledge about plants, animals, and their environment. The museum provides resources to trained scientists as well as to citizen scientists of all ages and backgrounds to explore natural history and especially to inspire in the young a lifelong interest in nature.
60,000+ items
3.8 million primary bitstreams
Statistics for UNT Digital Library

Items added between January 2005 and January 2012

75,817 Total Items (3,759,370 Files) / 60,392 Visible Items / 15,425 Hidden Items

Item Added by Month/Year

<table>
<thead>
<tr>
<th>Year</th>
<th>January</th>
<th>February</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>August</th>
<th>September</th>
<th>October</th>
<th>November</th>
<th>December</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>274</td>
<td></td>
<td>274</td>
</tr>
<tr>
<td>2011</td>
<td>625</td>
<td>132</td>
<td>1,724</td>
<td>215</td>
<td>2,404</td>
<td>2,768</td>
<td>458</td>
<td>1,030</td>
<td>11,893</td>
<td>407</td>
<td>13,930</td>
<td>31</td>
<td>35,617</td>
</tr>
<tr>
<td>2010</td>
<td>0</td>
<td>1,606</td>
<td>412</td>
<td>162</td>
<td>447</td>
<td>12,198</td>
<td>418</td>
<td>2,068</td>
<td>297</td>
<td>614</td>
<td>138</td>
<td>940</td>
<td>19,240</td>
</tr>
<tr>
<td>2009</td>
<td>28</td>
<td>50</td>
<td>0</td>
<td>86</td>
<td>1,401</td>
<td>299</td>
<td>31</td>
<td>218</td>
<td>147</td>
<td>90</td>
<td>1,212</td>
<td>3</td>
<td>3,565</td>
</tr>
<tr>
<td>2008</td>
<td>252</td>
<td>836</td>
<td>0</td>
<td>125</td>
<td>675</td>
<td>55</td>
<td>139</td>
<td>47</td>
<td>4</td>
<td>240</td>
<td>50</td>
<td>690</td>
<td>3,124</td>
</tr>
<tr>
<td>2007</td>
<td>58</td>
<td>39</td>
<td>112</td>
<td>27</td>
<td>185</td>
<td>732</td>
<td>80</td>
<td>155</td>
<td>1,481</td>
<td>70</td>
<td>112</td>
<td>0</td>
<td>3,051</td>
</tr>
<tr>
<td>2006</td>
<td>0</td>
<td>396</td>
<td>99</td>
<td>128</td>
<td>9</td>
<td>755</td>
<td>278</td>
<td>176</td>
<td>181</td>
<td>218</td>
<td>23</td>
<td>641</td>
<td>2,915</td>
</tr>
<tr>
<td>2005</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6,357</td>
<td>137</td>
<td>438</td>
<td>403</td>
<td>228</td>
<td>285</td>
<td>173</td>
<td>8,031</td>
</tr>
</tbody>
</table>
Over 1.5 million item uses

(in the last 2 years)
Statistics for UNT Digital Library

1,592,073 Total Uses / 112,418 in the last 31 days.

Usage by Month/Year

<table>
<thead>
<tr>
<th>Year</th>
<th>January</th>
<th>February</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>August</th>
<th>September</th>
<th>October</th>
<th>November</th>
<th>December</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>75,558</td>
<td>42,966</td>
<td>44,844</td>
<td>74,430</td>
<td>76,789</td>
<td>94,646</td>
<td>90,361</td>
<td>78,343</td>
<td>66,644</td>
<td>84,634</td>
<td>99,434</td>
<td>104,059</td>
<td>107,941</td>
</tr>
<tr>
<td>2011</td>
<td>42,966</td>
<td>74,430</td>
<td>76,789</td>
<td>94,646</td>
<td>90,361</td>
<td>78,343</td>
<td>66,644</td>
<td>84,634</td>
<td>99,434</td>
<td>104,059</td>
<td>107,941</td>
<td>967,582</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>33,373</td>
<td>60,165</td>
<td>73,366</td>
<td>56,433</td>
<td>40,565</td>
<td>40,312</td>
<td>34,378</td>
<td>32,358</td>
<td>39,031</td>
<td>44,983</td>
<td>50,383</td>
<td>39,987</td>
<td>547,574</td>
</tr>
<tr>
<td>2009</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>2</td>
<td>15</td>
<td>9</td>
<td>242</td>
<td>1,084</td>
<td>1,359</td>
</tr>
</tbody>
</table>
Almost one million uses last year
Partners from across the university.
Explore by Partners

University Relations, Communications & Marketing for UNT

The award-winning Division of University Relations, Communications and Marketing (URCM) is the chief communications and marketing organization for the University of North Texas. The division enhances and protects UNT’s institutional reputation; grows and strengthens the university's brand; encourages community engagement; and reinforces the university’s relevance in the lives of key target audiences.

UNT Archives

Created in 1973, the University of North Texas Archives houses university records of enduring value and documents the development of North Central Texas. The Archive’s physical collections include historical manuscripts, photographs, and oral histories, as well as a variety of records from UNT’s administrative and academic offices. In addition, the Archives serves as a depository for the microfilmed records of Cooke, Denton, Montague, and Wise Counties in Texas. Access to information in the Archives is governed by federal law, the Texas Public Information Act, and contractual agreement with donors.

UNT Center for Economic Development and Research

The UNT Center for Economic Development and Research performs economic analysis and public policy research, providing forecasting and strategic planning services to businesses, governments, and non-profit organizations.
Contributing to a wide range of collections
Explore by Collections

Advisory Commission on Intergovernmental...
The Advisory Commission on Intergovernmental Relations (ACIR) was an independent, bipartisan intergovernmental agency established by Public Law 86-380 in 1959. The ACIR Collection is composed of the agency’s publications that study the interactions between different levels of government.

Annals of Congress
The Annals of Congress is a record of the United States Congress from the First Congress in 1789 through the First Session of the Eighteenth Congress in 1824. The Annals are a summary rather than a transcription, compiled after 1834 from newspaper accounts. It is succeeded by the Register of Debates, the Congressional Globe, and the Congressional Record.

ARTsource
The images of artworks in this collection supplement the artworks in the Visual Resources Collection of the College of Visual Arts + Design’s online image database used for instruction, study, and presentation. Included here are images of paintings, drawings, prints, architecture, material culture, sculpture, photographs, furniture, fashion, and much more from vendors such as Saskia, Ltd.; ART on FILE; Harl!! Art Associates; Davis Art Images; and Bridgeman Art Library. Access to these images is restricted to the UNT community.
A demonstration of a collection.
UNT Scholarly Works

About this Collection

The Scholarly Works Collection is home to materials from the UNT community's research, creative, and scholarly activities. It serves as UNT's Open Access Repository. This collection brings together articles, papers, artwork, music, research data, reports, presentations, and other scholarly and creative products representing the expertise in our university community.

UNT Scholarly Works aims to:

- Provide easy access to valuable scholarly and creative materials from the UNT community
- Promote discovery through effective search and navigation tools
- Secure long-term access through stewardship and preservation
- Ensure sustainability through continuing system improvements
- Showcase UNT's research and creative achievements to a worldwide audience

To learn more about UNT Scholarly Works, see our web page or contact us at unrepository@unt.edu.

Browse the holdings of this collection
Standard searching with support for facets.
Absorption and Emission in the Non-Poissonian Case

Date: 2004-07-26
Creator: Aquino, Garardo

Description: This article addresses the challenging problems posed to the Kubo-Anderson (KA) theory by the discovery of intermittent resonant fluorescence with a nonexponential distribution of waiting times. The authors show how to extend the KA theory from aged to aging systems, aging for a very extended time period or even forever, being a crucial consequence of non-Poisson statistics.

Contributing Partner: UNT College of Arts and Sciences

The AGC Kinase MtIRE: A Link to Phospholipid Signaling During Nodulation?

Date: 2007
Creator: Pistarini, Catalina I.
Usage data for the collection
Statistics for UNT Scholarly Works

12,579 Total Uses / 570 Total Items (15,291 files) / 558 Visible / 12 Hidden

Usage by Month/Year

<table>
<thead>
<tr>
<th>Year</th>
<th>January</th>
<th>February</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>August</th>
<th>September</th>
<th>October</th>
<th>November</th>
<th>December</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>1,011</td>
<td></td>
<td>1,011</td>
</tr>
<tr>
<td>2011</td>
<td>221</td>
<td>405</td>
<td>474</td>
<td>910</td>
<td>1,002</td>
<td>862</td>
<td>888</td>
<td>795</td>
<td>1,252</td>
<td>1,311</td>
<td>1,753</td>
<td>1,279</td>
<td>11,262</td>
</tr>
<tr>
<td>2010</td>
<td>0</td>
<td>152</td>
<td>154</td>
<td>306</td>
</tr>
</tbody>
</table>
Statistics for UNT Scholarly Works

Totals

<table>
<thead>
<tr>
<th>Description</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Number of Items</td>
<td>570</td>
</tr>
<tr>
<td>Total Number of Visible Items</td>
<td>558</td>
</tr>
<tr>
<td>Total Number of Hidden Items</td>
<td>12</td>
</tr>
<tr>
<td>Total Number of Files</td>
<td>15,291</td>
</tr>
<tr>
<td>Total Number of Uses</td>
<td>12,579</td>
</tr>
</tbody>
</table>

Statistics for Contributing Partners

<table>
<thead>
<tr>
<th>Name</th>
<th>Items Held</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNT Center For Environmental Philosophy</td>
<td>4 items</td>
</tr>
<tr>
<td>UNT Center for Economic Development and Research</td>
<td>57 items</td>
</tr>
<tr>
<td>UNT College of Arts and Sciences</td>
<td>70 items</td>
</tr>
<tr>
<td>UNT College of Business</td>
<td>2 items</td>
</tr>
<tr>
<td>UNT College of Education</td>
<td>4 items</td>
</tr>
<tr>
<td>UNT College of Engineering</td>
<td>127 items</td>
</tr>
<tr>
<td>UNT College of Information</td>
<td>35 items</td>
</tr>
<tr>
<td>UNT College of Music</td>
<td>1 item</td>
</tr>
<tr>
<td>UNT College of Public Affairs and Community Service</td>
<td>30 items</td>
</tr>
<tr>
<td>UNT College of Visual Arts + Design</td>
<td>1 item</td>
</tr>
<tr>
<td>UNT Health Science Center</td>
<td>1 item</td>
</tr>
<tr>
<td>UNT Libraries</td>
<td>238 items</td>
</tr>
</tbody>
</table>
Collection API documentation
APIs for UNT Scholarly Works

Introduction

The UNT Digital Library provides public access to a number of application programming interfaces (APIs) to the collections within the system. Below are examples of APIs available for UNT Scholarly Works that can be used openly by those interested in programmatically accessing data from this system. You do not need to apply for a special key to use these APIs.

For additional information about these APIs or if you have general questions about machine interaction with the UNT Digital Library please contact Mark Phillips.

Note that all example URLs below use the same protocol and server name, http://digital.library.unt.edu/explore/collections/UNTSW. We only show the URL paths and parameters below to save space.

The API

OAI-PMH

The Open Archives Initiative’s Protocol for Metadata Harvesting (OAI-PMH) allows programatic access to this collection’s metadata. Two metadata formats are currently supported, the standard oai_dc and the UNT Libraries native metadata format until.

Below are example URLs which demonstrate some of the standard views of this OAI-PMH repository:

- **oai/**
 - base URL for OAI-PMH repository
- **oai/?verb=Identify**
 - Display information about this repository
- **oai/?verb=ListMetadataFormats**
 - List available metadata formats
- **oai/?verb=ListSets**
 - List available sets
- **oai/?verb=ListRecords&metadataPrefix=oai_dc**
 - Display records in the oai_dc metadata format
- **oai/?verb=ListRecords&metadataPrefix=until**
 - Display records in the until metadata format

SRU

Search/Retrieval via URL (SRU) can be used to run advanced queries on the content of this collection. A human readable stylesheet has been added to help demonstrate searches via SRU. You can see this interface at the following URL.
OAI-PMH repository
OAI 2.0 Request Results

You are viewing an HTML version of the XML OAI response. To see the underlying XML use your web browser's view source option. More information about this XSLT is at the bottom of the page.

Datestamp of response: 2012-01-20T23:40:49Z
Request URL: http://digital.library.unt.edu/explore/collections/UNTSW/oai/

Request was of type Identify.

Repository Name: UNT Scholarly Works, hosted by the University of North Texas Libraries
Base URL: http://digital.library.unt.edu/explore/collections/UNTSW/oai/
Protocol Version: 2.0
Earliest Datestamp: 2004-05-19T00:00:00Z
Deleted Record Policy: transient
Granularity: YYYY-MM-DDThh:mm:ssZ
Admin Email: mark.phillips@unt.edu

Unsupported Description Type
The XSLT currently does not support this type of description.

<title>pyoai</title>
<version>2.4.4</version>
<URL>http://infrao.com/products/oaiPack</URL>
</toolkit>
OAI 2.0 Request Results

You are viewing an HTML version of the XML OAI response. To see the underlying XML use your web browser's view source option. More information about this XSLT is at the bottom of the page.

Request URL: http://digital.library.unt.edu/explore/collections/UNTSW/oai/

Request was of type ListRecords.

OAI Record: info:ark/67531/metadc28337

OAI Record Header

OAI Identifier: info:ark/67531/metadc28337
setSpec: partner:UNT
setSpec: collection:UNTSW
setSpec: access_rights:public

Dublin Core Metadata (oai_dc)

Title: Annexation of Texas Project
Author or Creator: Phillips, Mark Edward
Subject and Keywords: preservation
Subject and Keywords: annexation
Subject and Keywords: Tex-Treasures
Subject and Keywords: Texas State Library and Archives Commission
Description: This presentation outlines the "From Republic to State: Debates and Documents Relating to the Annexation of Texas, 1836-1856" project. This grant funded project involved digitizing 6000 objects.
Other Contributor: American Library Association (ALA)
Access to full metadata records
Title: Annexation of Texas Project

Creator: Phillips, Mark Edward

Publisher: American Library Association (ALA)

Date: 2003-06-21

Format: Digital Projects Unit

Rights: Public

Description: This presentation outlines the 'From Republic to State: Debates and Documents Relating to the Annexation of Texas, 1836-1856' project. This grant-funded project involved digitizing 6000 objects.

Subject: Texas, Texas State Library and Archives Commission, Texas Treasures

Conference: Digitalization of Government Information by Government Documents Round Table (GODART) [Preconference], American Library Association (ALA) Annual Conference, 2003, Toronto, Canada

Publication: UNT collection: UNTSW: unt:collection
SRU endpoint
The Scholarly Works Collection is home to materials from the UNT community’s research, creative, and scholarly activities. It serves as UNT’s Open Access Repository. This collection brings together articles, papers, artwork, music, research data, reports, presentations, and other scholarly and creative products representing the expertise in our university community. Access to some items in this collection may be restricted.

Search

<table>
<thead>
<tr>
<th>Index</th>
<th>Relation</th>
<th>Term</th>
<th>Boolean</th>
</tr>
</thead>
<tbody>
<tr>
<td>contributor</td>
<td>=</td>
<td></td>
<td>and</td>
</tr>
<tr>
<td>coverage</td>
<td>=</td>
<td></td>
<td>and</td>
</tr>
<tr>
<td>creator</td>
<td>=</td>
<td></td>
<td>and</td>
</tr>
<tr>
<td>date</td>
<td>=</td>
<td></td>
<td>and</td>
</tr>
<tr>
<td>description</td>
<td>=</td>
<td></td>
<td>and</td>
</tr>
<tr>
<td>format</td>
<td>=</td>
<td></td>
<td>and</td>
</tr>
<tr>
<td>identifier</td>
<td>=</td>
<td></td>
<td>and</td>
</tr>
<tr>
<td>language</td>
<td>=</td>
<td></td>
<td>and</td>
</tr>
<tr>
<td>publisher</td>
<td>=</td>
<td></td>
<td>and</td>
</tr>
<tr>
<td>relation</td>
<td>=</td>
<td></td>
<td>and</td>
</tr>
<tr>
<td>rights</td>
<td>=</td>
<td></td>
<td>and</td>
</tr>
<tr>
<td>source</td>
<td>=</td>
<td></td>
<td>and</td>
</tr>
<tr>
<td>subject</td>
<td>=</td>
<td></td>
<td>and</td>
</tr>
<tr>
<td>title</td>
<td>=</td>
<td></td>
<td>and</td>
</tr>
</tbody>
</table>

Browse

<table>
<thead>
<tr>
<th>Index</th>
<th>Relation</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>contributor</td>
<td>=</td>
<td></td>
</tr>
</tbody>
</table>

Response Position: 10

Maximum Terms: 20
OpenSearch endpoint.
Other helper APIs
Simple, flexible data model
Absorption and Emission in the Non-Poissonian Case

Description: This article addresses the challenging problems posed to the Kubo-Anderson (KA) theory by the discovery of intermittent resonant fluorescence with a nonexponential distribution of waiting times. The authors show how to extend the KA theory from aged to aging systems, aging for a very extended time period or even forever, being a crucial consequence of non-Poisson statistics.

Creator: Aquino, Gerardo
Palatella, Luigi
Grigolini, Paolo

Creation Date: 2004-07-28

Partner(s): UNT College of Arts and Sciences
About | Browse this Partner

Collection(s): UNT Scholarly Works
About | Browse this Collection

Usage: Total Uses: 5
Past 30 days: 2
Yesterday: 0
Absorption and Emission in the Non-Poissonian Case
Absorption and Emission in the Non-Poissonian Case

... that the real part of \(t \) can be used to denote either emission or absorption at time \(t \). We note that... has also the effect of making the absorption identical to the emission spectrum. Figure 1 illustrates... implying that the distribution of waiting times before the first jump is not \(\lambda(t) \) and \(f(t) \) has to be... one of the two states begins exactly a time \(t_0 \) and ends at time \(t = n \). For \(N/2 \) of these sequences... we use the "light on" as initial condition, and for \(N/2 \) the "light off" state. Let us consider the

Page 1

... VOLUME 93, NUMBER 5 PHYSICAL REVIEW LETTERS Absorption and Emission in the Non-Poissonian Case... absorption line shape in the case \(v > 2 \), when the stationary condition applies, and evaluated the form that... Gerardo Aquino, Luigi Palatella, and Paolo Grigolini 1 2 3 1Center for Nonlinear Science, University of... Pisa and INFN, via Buonarroti 2, 56126 Pisa, Italy 2Institute of Processo Chimico Fisici del CNR Area... that the conditions of ordinary statistical mechanics assumed by the line shape theory of Kubo and

Page 4

... Comparison between numerical and theoretical absorption spectra for different values of the detuning... \(u[1 - (u)](20) \) and \(S + u(1/2)(t-t') \epsilon(t-t') \) \(1/\epsilon(u) \) \(u a(21) U - A... A = -W, for the fluctuating variable and is derived from the expression for \(A + u(1) \) by replacing... (\(t(0) \)). Finally \(k(1/2) \) is the Laplace transform of \((t(0)) \), and it is derived from the earlier... both Figs. 1 and 2, where the analytical predictions are compared to the corresponding numerical

Page 3

... \(v < 3 \), and found that the corresponding spectrum has two sharp peaks. Klafter and Zumofen, in Ref... exponential characteristic function, and consequently a Lorentzian spectrum. It is remarkable that our... theoretical perspective establishes a connection between the prediction of Zumofen and Klafter, valid at short... times, and that of Ref. [9], valid at large times. Remarkably, we evaluate numerically also the spectrum... single trajectory starting a time \(t' \) with \(s = +W \) and ending at time \(t \) with the same positive \(I \) value
Absorption and Emission in the Non-Poissonian Case

Gerardo Aquino,1 Luigi Patatella,2 and Paolo Grigolini1,2,3
1Center for Nonlinear Science, University of North Texas, P.O. Box 311427, Denton, Texas 76203-1427, USA
2Dipartimento di Fisica dell’Università di Pisa and INFN, via Buonarroti 2, 56126 Pisa, Italy
3Istituto di Processi Chimici Fisici del CNR Area della Ricerca di Pisa, Via G. Moruzzi 15024 Pisa, Italy
(Received 20 February 2004; published 28 July 2004)

This Letter addresses the challenging problems posed to the Kato-Anderson (KA) theory by the discovery of intermittent resonant fluorescence with a nonexponential distribution of waiting times. We show how to extend the KA theory from aged to aging systems, aging for a very extended time period or even forever, being a crucial consequence of non-Poisson statistics.

DOI: 10.1103/PhysRevLett.93.090601 PACS numbers: 05.40.Pb, 78.47.-p, 87.15.Ya

In the last few years, as a consequence of an increasingly faster technological advance, it has become clear that the conditions of ordinary statistical mechanics assumed by the line shape theory of Kato and Anderson (KA) [1], are violated by some of the new materials. For instance, the experimental research work of Neuhäuser et al. [2] has established that the fluorescence emission of single nanocrystals exhibits interesting intermittent behavior, namely, a sequence of “light on” and “light off” states, departing from Poisson statistics. In fact, the waiting time distribution in both states is nonexponential, and it shows a universal power law behavior [3]. In this Letter, for simplicity, we assign to both states the same waiting time distribution

$$\psi(t) = (\nu - 1) \frac{\Gamma(\nu - 1)}{(t + \Gamma)^\nu},$$

with $1 < \nu < \infty$. The parameter $\Gamma > 0$ is introduced for the purpose of making $\psi(t)$ finite at $t = 0$ so as to ensure its normalization. We shall focus on the case when $\nu < 1$. In accordance with Brokmann et al. [4], the experimental condition $\nu < 2$ implies that the observed waiting time distribution depends on the time at which observation begins. Let us assume that the probability of the first jump from the “on” (“off”) to the “off” (“on”) state is given by Eq. (1), if the observation begins at $t = 0$. If the observation begins at a later time $t_o > 0$, the distribution of the sojourn times, before the first jump, turns out to be different from Eq. (1); it is t_o dependent and, for this reason, is denoted by $\psi(t - t_o)$. This is the property responsible for the breakdown of the ordinary KA theory: it is the aging effect on which we focus our attention in this Letter. It is worth noticing that when $\nu > 2$, this aging effect is still present, in a less dramatic form, given the fact that a stationary condition exists, even if the regression to it takes a virtually infinite time if $\nu < 3$ [5].
Absorption and Emission in the Non-Poissonian Case

Included in:
Partner(s): UNT College of Arts and Sciences
Collection(s): UNT Scholarly Works

6 Total Uses. / 2 in the last 32 days.

Item Usage by Month/Year

<table>
<thead>
<tr>
<th>Year</th>
<th>January</th>
<th>February</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>August</th>
<th>September</th>
<th>October</th>
<th>November</th>
<th>December</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>2011</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
Let me sidestep to another usage example
The Application of Hackman and Oldham's Job Characteristic Model to Perceptions Community Music School Faculty Have Towards Their Job

Description:

Hackman and Oldham's Job Characteristic Model was applied to study of perceptions community music school faculty hold towards their job. The research questions addressed core job characteristics of skill variety, task identity, task significance, autonomy, and feedback, critical psychological states (experienced meaningfulness, experienced responsibility, and knowledge of results); personal and work outcomes of satisfaction and motivation; need for professional growth. The results were compared to the national norms for nine different job families provided by Oldham, Hackman, and Stepina. Thirty-three schools, all members of the National Guild of Community Schools of the Arts, located in every geographical region of the United States, yielded 437 faculty responses (64% return rate). Of the core job characteristics, dealing with others and autonomy received the highest ratings; feedback and task significance received the lowest ratings. Of the psychological states, experienced responsibility yielded the highest rating and experienced meaningfulness yielded the lowest ratings. Of the personal/work outcomes, personal promotion and motivation were the highest rated. The results provide insights into the perceptions of community music school faculty.
The Application of Hackman and Oldham's Job Characteristic Model to Perceptions Community Music School Faculty Have Towards Their Job

Included in:
Partner(s): UNT Libraries
Collection(s): UNT Theses and Dissertations

9,057 Total Uses. / 850 in the last 32 days.

Item Usage by Month/Year

<table>
<thead>
<tr>
<th>Year</th>
<th>January</th>
<th>February</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>August</th>
<th>September</th>
<th>October</th>
<th>November</th>
<th>December</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>663</td>
<td></td>
<td>663</td>
</tr>
<tr>
<td>2011</td>
<td>62</td>
<td>73</td>
<td>201</td>
<td>300</td>
<td>502</td>
<td>585</td>
<td>523</td>
<td>597</td>
<td>671</td>
<td>1,292</td>
<td>1,316</td>
<td>924</td>
<td>7,046</td>
</tr>
<tr>
<td>2010</td>
<td>118</td>
<td>220</td>
<td>262</td>
<td>263</td>
<td>65</td>
<td>101</td>
<td>64</td>
<td>47</td>
<td>57</td>
<td>64</td>
<td>58</td>
<td>29</td>
<td>1,348</td>
</tr>
</tbody>
</table>
Recent Referral Breakdown for the last 32 days (12/19/2011 to 01/20/2012)

<table>
<thead>
<tr>
<th>Referral Type</th>
<th>Total</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search Engine</td>
<td>840</td>
<td>91%</td>
</tr>
<tr>
<td>Other</td>
<td>58</td>
<td>6%</td>
</tr>
<tr>
<td>UNT Digital Library</td>
<td>16</td>
<td>1%</td>
</tr>
<tr>
<td>Unknown</td>
<td>8</td>
<td>0%</td>
</tr>
</tbody>
</table>

Referral:
- www.google.com
 - http://www.google.com/search?q=5+dimensions+of+hackman+%26+oldham%3Bs+job
 - http://www.google.com/search?q=according+to+the+job+characteristics=model%2C+skill=variety%2C+task=identity+and+task+significance+lead+to+the+psychological+stat
 - http://www.google.com/search?q=differences+between+job+design+and+job+characteristics+filetype%3Apdf
 - http://www.google.com/search?q=hackman+%26+oldham
 - http://www.google.com/search?q=hackman+and+oldham+281975%29
 - http://www.google.com/search?q=hackman+and+oldham+model
 - http://www.google.com/search?q=job+characteristics+%2B+apoly+to+job
 - http://www.google.com/search?q=job+characteristics+model+%28jcm%29+devised+by+hackman+and+oldham+%281976%29
 - http://www.google.com/search?q=job+characteristics+model+study+results
 - http://www.google.com/search?q=job+characteristics+model+survey
 - http://www.google.com/search?q=job+characteristics+theory
 - http://www.google.com/search?q=job+diagnostic+survey+questionnaire+hackman+oldham
 - http://www.google.com/search?q=my+job+provides+a+lot+of+variety+and+hackman
 - http://www.google.com/search?q=oldhams+application
 - http://www.google.com/search?q=P+Hackman+and+Oldham+developed+a+saft+report+Instrument+for+managers+to+use+in+diagnosing
 - http://www.google.com/search?q=proposal+about+job+characteristics
 - http://www.google.com/search?q=scoring+the+15+question+job+diagnostic+survey
 - http://www.google.com/search?q=teachers%27+satisfaction
 - http://www.google.com/search?q=why+job+characteristics+is+important+definition+filetype%3Apdf
Absorption and Emission in the Non-Poissonian Case

This item is available in multiple formats. Choose one below.

Read this Article
Number of Items: 4
Filetype: jpg (image)

Download this Article
Number of Items: 1
Filetype: pcf (file)
Absorption and Emission in the Non-Poissonian Case

Gerardo Aquino,1 Luigi Palatella,2 and Paolo Grigolini1-3

1Center for Nonlinear Science, University of North Texas, P.O. Box 311427, Denton, Texas 76203-1427, USA
2Dipartimento di Fisica dell’Università di Pisa and INFM, via Buonarroti 2, 56126 Pisa, Italy
3Istituto del Processi Chimico Fisici del CNR Area della Ricerca di Pisa, Via G. Moruzzi 156124 Pisa, Italy

(Received 20 February 2004; published 28 July 2004)

This Letter addresses the challenging problems posed to the Kubo-Anderson (KA) theory by the discovery of intermittent resonant fluorescence with a nonexponential distribution of waiting times. We show how to extend the KA theory from aged to aging systems, aging for a very extended time period or even forever, being a crucial consequence of non-Poisson statistics.

DOI: 10.1103/PhysRevLett.93.050601 PACS numbers: 05.40.Fb, 78.47.+p, 87.15.Ya

In the last few years, as a consequence of an increasingly faster technological advance, it has become clear that the conditions of ordinary statistical mechanics assumed by the line shape theory of Kubo and Anderson (KA) [1], are violated by some of the new materials. For instance, the experimental research work of Neuhäuser et al. [2] has established that the fluorescence emission of single nanocrystals exhibits interesting intermittent behavior, namely, a sequence of “light on” and “light off” states, departing from Poisson statistics. In fact, the waiting time distribution in both states is nonexponential, and it shows a universal power law behavior [3]. In this Letter, for simplicity, we assign to both states the same waiting time distribution

$$\psi(t) = (\nu - 1) \frac{T^{\nu - 1}}{(t + T)^\nu}, \quad (1)$$

with $1 < \nu < \infty$. The parameter $T > 0$ is introduced for the purpose of making $\psi(t)$ finite at $t = 0$ so as to ensure its normalization. We shall focus on the case when $\nu < 3$.

In accordance with Brokmann et al. [4], the experimental condition $\nu < 2$ implies that the observed waiting time distribution depends on the time at which observation begins. Let us assume that the probability of the first jump from the “on” (“off”) to the “off” (“on”) state is given by Eq. (1), if the observation begins at $t = 0$. If the observation begins at a later time $t > 0$, the distribution of the sojourn times, before the first jump, turns out to be different from Eq. (1): it is t_0-dependent and, for this reason, is denoted by $f(t, t_0)$. This is the property that holds true. Here we illustrate a way to evaluate the time evolution of the absorption spectrum, so as to take into account the aging effects of Brokmann et al., with $\nu < 2$, as well as those of Ref. [5], with $\nu > 2$. We use the following stochastic equation:

$$\frac{d}{dt} \mu(t) = i(\omega_0 + \xi(t))\mu(t). \quad (2)$$

The quantity $\mu(t)$ is a complex number, corresponding to the operator $|e\rangle\langle g|$ of the more rigorous quantum mechanical treatment [7]. $|e\rangle$ and $|g\rangle$ being the excited and the ground state, respectively, ω_0 is the energy difference between the excited and the ground state, and $\xi(t)$ denotes the energy fluctuations caused by the cooperative environment of this system. In the presence of the coherent excitation, Eq. (2) becomes

$$\frac{d}{dt} \mu(t) = i(\omega_0 + \xi(t))\mu(t) + k \exp(i\omega t), \quad (3)$$

where ω denotes the radiation field frequency. It is convenient to adopt the rotating-wave approximation. Let us express Eq. (3) by means of the transformation $\tilde{\mu}(t) = \exp(i\omega t)\mu(t)$. After some algebra, we get a simple equation of motion for $\tilde{\mu}(t)$. For simplicity we denote $\tilde{\mu}(t)$ with the symbol $\mu(t)$ again, thereby making the resulting equation read:

$$\frac{d}{dt} \mu(t) = i[\delta + \xi(t)]\mu(t) + k. \quad (4)$$
Ability to add new collections easily as researchers have new projects.
Joseph Britton Freshwater Mussel Collection

About this Collection

About Joseph C. Britton, Jr.

Joseph C. Britton, Jr. was born on October 14, 1942 in Fort Worth, Texas. He earned a Bachelor’s of Science and a Master’s Degree in Biology from Texas Christian University (1963 and 1965 respectively). He earned a Ph.D. from George Washington University in 1970. His career began as the Assistant Director of Exhibits at the Smithsonian Institution National Museum of Natural History in Washington, D.C. where his early studies were of the marine bivalve family Lucinidae. Dr. Britton returned to his hometown of Fort Worth, Texas in the early 1970s and accepted a faculty position in the Biology Department at Texas Christian University. His research interests then transitioned to freshwater bivalves. He surveyed Texas waters for native mussels and studied the ecology and distribution of the invasive freshwater Asian clam, Corbicula fluminea. Numerous survey expeditions were conducted throughout the state of Texas in an attempt to eradicate this non-native species.
Amblema plicata, Specimen #2

Sequence: 1 Sequence: 2 Sequence: 3 Sequence: 4
Amblema plicata, Specimen #2

Low cost, highly scalable infrastructure for building and managing digital content.
Documenting Plate Waste in Middle School Cafeterias Using Digital Still Photography

About this Collection

These images document the disappearance of food and beverage items by photographing trays before and after schoolchildren ate lunch. The images were taken in North Texas during lunchtime in urban middle schools that participated in the National School Lunch and School Breakfast Programs.

About the Project

These photographs come from USDA-ERS Project #10.253, "Testing a Food Choice Innovation for Middle School Cafeterias," conducted from October 2010 to May 2011. Researchers were P. Connors, C. Bednar, B. Davenport, and L. Kenyon.

Equipment and Procedure

Three Canon PowerShot 1400 cameras with 8 GB memory cards were used. An apparatus forming a T-aerial was constructed using \(\frac{1}{2} \) inch PVC pipe with fittings and a GorillaGripper to suspend each camera at a height of two feet above a black FOAMCORE board cut to fit the top shelf of a food trolley. To position trays directly below the camera an 8x15 inch white rectangle replicating dimensions of the Genpak five-compartment Styrofoam lunch tray was outlined on the FOAMCORE board. Each apparatus was mounted on a three-shelf food trolley for easy relocation.
Student Lunch Tray: 01_20110216_01A5603

Date: 2011-02-16
Creator: Connors, Priscilla
Description: Images taken at a North Texas middle school documenting the food on a lunch tray and the remains on the same tray after the meal was consumed. These images are part of a study to document what food students are eating.
Contributing Partner: UNT College of Merchandising, Hospitality and Tourism

Student Lunch Tray: 01_20110216_01A5606

Date: 2011-02-16
Creator: Connors, Priscilla
Description: Images taken at a North Texas middle school documenting the food on a lunch tray and the remains on the same tray after the meal was consumed. These images are part of a study to document what food students are eating.
Contributing Partner: UNT College of Merchandising, Hospitality and Tourism

Student Lunch Tray: 01_20110216_01A5607

Date: 2011-02-16
Creator: Connors, Priscilla
Description: Images taken at a North Texas middle school documenting the food on a lunch tray and the remains on the same tray after the meal was consumed. These images are part of a study to document what food students are eating.
Contributing Partner: UNT College of Merchandising, Hospitality and Tourism
Student Lunch Tray: 01_20110216_01A5612

<table>
<thead>
<tr>
<th>Description:</th>
<th>Images taken at a North Texas middle school documenting the food on a lunch tray and the remains on the same tray after the meal was consumed. These images are part of a study to document what food students are eating.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creator:</td>
<td>Connors, Priscilla</td>
</tr>
<tr>
<td>Location:</td>
<td>United States - Texas</td>
</tr>
<tr>
<td>Creation Date:</td>
<td>2011-02-16</td>
</tr>
<tr>
<td>Partner(s):</td>
<td>UNT College of Merchandising, Hospitality and Tourism</td>
</tr>
<tr>
<td>Collection(s):</td>
<td>Documenting Plate Waste in Middle School Cafeterias Using Digital Still Photography</td>
</tr>
</tbody>
</table>
| Usage | Total Uses: 41
Past 30 days: 0
Yesterday: 0 |
Statistics for Documenting Plate Waste in Middle School Cafeterias Using Digital Still Photography

3,664 Total Uses / 1,414 Total Items (2,830 files) / 1,414 Visible / 0 Hidden

Usage by Month/Year

<table>
<thead>
<tr>
<th>Year</th>
<th>January</th>
<th>February</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>August</th>
<th>September</th>
<th>October</th>
<th>November</th>
<th>December</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>551</td>
<td>1,061</td>
<td>1,482</td>
<td>174</td>
<td>37</td>
<td>56</td>
<td>62</td>
<td>219</td>
<td>23</td>
</tr>
<tr>
<td>2011</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,061</td>
<td>1,482</td>
<td>37</td>
<td>56</td>
<td>62</td>
<td>219</td>
<td>3,641</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Statistics for Documenting Plate Waste in Middle School Cafeterias Using Digital Still Photography

3,664 Total Uses / 1,414 Total Items (2,830 files) / 1,414 Visible / 0 Hidden

Usage by Month/Year

<table>
<thead>
<tr>
<th>Year</th>
<th>January</th>
<th>February</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>August</th>
<th>September</th>
<th>October</th>
<th>November</th>
<th>December</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>23</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>2011</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>551</td>
<td>1,061</td>
<td>1,482</td>
<td>174</td>
<td>37</td>
<td>55</td>
<td>62</td>
<td>219</td>
<td>3,641</td>
</tr>
</tbody>
</table>
Lessons learned so far...
Grant funding gets people excited.
“if there is money involved we can do anything”
But...
How do we support “unfunded” project?
About this Collection

JAC is a forum for scholars interested in theoretical approaches to the interdisciplinary study of rhetoric, writing, multiple literacies, and politics. JAC publishes four book-length issues a year, featuring articles, interviews, essays, review essays, and reviews. The journal is peer-reviewed and sponsors four annual awards for outstanding scholarship. This collection includes the complete archives except for the three most recent issues which are released as the next is published.

Browse the holdings of this collection
The Miniature Book Society has published its newsletter under various titles since 1983. The publication serves to highlight the doings of the society, its members, and news and events in the world of miniature books. Since 2001, the Miniature Book News has been published within the Miniature Book Society Newsletter.
Professor Ray Gough Slide Collection

This collection features images from Professor Ray Gough's travels to Europe, the Middle East, and the Orient. Included are images of architecture, archaeological sites, and pottery workshops and kilns.
Chemical Information

About this Collection

The Chemical Information Collection contains publications of the American Chemical Society, Division of Chemical Information. Included are Chemical Literature (1949-1975) and Chemical Information Bulletin (1975-present). Appealing to division members and others interested in chemistry, the publications contain bibliographies, abstracts of meeting sessions, news about members, and, sometimes, "chemical games."

Browse the holdings of this collection
The Activator, Special Issue Program

Description:
This publication of the Dallas-Fort Worth Section of the American Chemical Society includes information about research, prominent scientist, organizational business, and various other stories of interest to the community. Published monthly during long academic semesters. This special issue includes a full program for the events of the society's regional meeting at the University of Texas as well as descriptions of local attractions and special programs.

Creator:
American Chemical Society, Dallas/Fort Worth Section.
Abbott, H. E.

Location:
United States - Texas - Travis County - Austin

Creation Date:
1945-12

Partner(s):
Other
About | Browse this Partner

Collection(s):
Chemical Information
About | Browse this Collection

Usage:
Total Uses: 22
Past 30 days: 14
Yesterday: 3
Who is responsible after the interest is lost?
Long term and sustainable management, access and preservation of the research and scholarly output of our faculty is an important aspect of a research library.
Digital library infrastructure plays an important role in assisting faculty with their scholarly endeavors.
mark.phillips@unt.edu

http://digital.library.unt.edu/