Metal Colloids and Quantum Dots:
Linear and Nonlinear Optical Properties

Fisk University
Physics Department
Nashville, TN 37208

May 12, 1997

Grant No. DE-FG05-94ER45521
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
1. Background
Nanophase materials have found a wide application in a variety of technological areas which include ultrafast optical switching, high density information storage and retrieval, electronics, and catalysts, to mention a few. Nanocrystal science has also drawn considerable interest from the fundamental perspective engaging physicists, chemists, and material scientists into this area of rapidly expanding and challenging research. Basic questions concerning how matter evolves from atomic like behavior to molecular and onto bulk lie at the center nanocrystal research. In addition, because of the high surface to volume ratio of the nanocrystals, the interaction potential between a nanocrystal and its surrounding environment becomes an important issue in determining its properties. While significant progress has been made in nanocrystal research, there are many problems concerned with their fabrication. In particular, the difficulty of incorporating nanocrystals into a matrix that is appropriate for ultimate device development has hindered some aspects of nanocrystal research. Ion implantation is a method that is now established as a technique for fabricating metal and semiconductor nanocrystals. It is highly versatile in that one may select nearly any host material for incorporating the nanocrystals of interest. The flexibility of being able to select the host matrix is also interesting from the point of view that it opens the opportunity to investigate matrix-nanocrystal interactions. We summarize in the following sections results on metal and semiconductor nanocrystals formed by ion implantation into dielectric hosts.

2. Metal Nanocrystals, Progress
Metal nanocrystals are particularly interesting in that they possess a large polarizability. The large polarizability which originates from the surface plasmon resonance is expected to enhance the third order nonlinear susceptibility $\chi^{(3)}$. Enhancement of $\chi^{(3)}$ is important because the real part is responsible for many processes based on optical bistability such as optical switching. Consequently, it is essential that the linear optical response of metal nanocrystals be fully characterized in order to understand the optical nonlinearities.

2.1 Gold Nanocrystals
Gold nanocrystals were formed in MgO and porous Vycor Matrices. The gold nanocrystals in MgO are discussed first.

Single crystal substrates of MgO cut (100) were used for implantation. Ions doses between 1×10^{16} and 1×10^{17} ions/cm2 were implanted at room temperature at an energy of 1.1 MeV. The substrates were annealed at temperatures between 900 and 1200°C in 95% Ar + 5%H$_2$ and 95% Ar + 5%O$_2$ atmospheres. Optical spectra were measured before and after the annealing treatments. The as-implanted samples showed peaks at 575 and 530 nm which are assigned to F_a centers and the surface plasmon absorption of gold nanocrystals, respectively. Annealing the samples in the oxidizing atmosphere caused the peak at 530 nm to shift to 560 nm. Annealing the same sample in a reducing atmosphere caused the peak at 560 nm to shift back to 530 nm. This process cycles as many as 30 times. We have interpreted that this frequency shift arises from the gold nanocrystals interacting with the F_a centers. When the sample is annealed in a reducing atmosphere, F_a centers are generated. These

1Details of results can be found in Appendix A: Reprints
centers then inject electrons (the Fermi level is lower for gold than the F centers) into the gold nanocrystal causing the surface plasmon frequency to blueshift. Annealing the substrates in an oxidizing atmosphere annihilates the F centers causing the surface plasmon frequency to return 530 nm. The particular significance of these results lies in the fact that information concerning the interface between the gold nanocrystal and the MgO matrix has been obtained. This clearly demonstrates that effective medium theories (Maxwell Garnett, Bruggeman, etc) cannot account for interface effects such as the ones just noted and care should be taken when evaluating the quality of experimental data with effective medium theories.

Gold was implanted into porous Vycor substrates at 1.1 MeV and at doses from 1x10^{16} to 1x10^{17} ions/cm². The samples were annealed in a 95% Ar + 5% H₂ atmosphere at temperatures from 800 to 1100°C. The vibrational and electronic spectra were recorded before and after the annealing treatments. The surface plasmon absorption was observed at 540 nm and increased in intensity with increasing annealing time and temperature. An additional mode also appeared near 900 nm after annealing and was assigned to a second surface plasmon absorption that resulted from the removal of the spherical symmetry of the nanocrystals. This occurs by anisotropic shrinkage of the glass which is larger in the radial direction than in the axial. The spectra were reproduced using Maxwell Garnett theory for prolate ellipsoids. The fit was within a few percent error and confirmed the particles were prolate ellipsoids.

2.2 Zinc Nanocrystals
Zinc ion implanted silica with controlled thermal annealing was investigated. Low temperature measurements indicate the presence of Zn clusters in the as-implanted samples. Optical spectra of the samples annealed under a reducing environment suggest Zn cluster and Zn colloid formation. An absorption peak at 5.3 eV may be due to the surface plasmon absorption of Zn colloids. The samples annealed in an oxidizing atmosphere show peaks near 4.3 and 4.8 eV indicating ZnO quantum dot formation. The blueshift of the exciton is attributed to quantum confinement effects.

3. Semiconductor Nanocrystals, Progress¹
Semiconductor nanocrystals intrigue scientists for a number of reasons. They offer the opportunity for testing theories based on quantum size effects, and they are rich candidates for optical devices. Such devices include: flat panel displays, nanostructure lasers, and narrow spectrum resonant cavity emitting diodes are just some examples.

3.1 Silicon
Silicon nanocrystals were formed by high dose Si implantation into a SiO₂ film on silicon. Multiple energy implants were used to produce an excess Si concentration of 5x10^{21}/cm³ throughout the film and the implanted sample was annealed subsequently at 1100°C for 1 hour in a 96%Ar + 4% H₂ atmosphere. Under these conditions, the average nanocrystal size was ~4 nm in diameter and very few exceeded 8 nm. The nanocrystals exhibited strong photoluminescence (PL) in the wavelength range of 750 nm although the origin is not known. By comparison to the photoluminescence of porous silicon, the intensity and stability of the PL from the nanocrystals was greater than that of porous silicon. The formation of the nanocrystals was also confirmed by cross sectional TEM measurements.

3.2 Silicon-Germanium Alloy
SiGe nanocrystal alloys were formed by sequential ion implantation of Si and Ge into a layer of SiO₂
on a silicon substrate. The sequence of the implants were found to significantly affect the nanocrystal formation and was attributed to ion beam mixing. The formation of the nanocrystals was confirmed by cross sectional TEM and by x-ray diffraction measurements. When the samples were implanted with Ge and then Si followed by annealing at 1100°C the nanocrystals are much larger than when the sequence is Si followed by Ge. It is expected that this finding is general for compound semiconductors formed by sequential ion implantation and will be exploited in the future for affecting size control of the quantum dots.

3.3 Gallium Arsenide
Quantum dots of GaAs were formed by sequential ion implantation into Al₂O₃ and SiO₂. The crystals are randomly oriented in silica and less than 15 nm in diameter. In the Al₂O₃ matrix, the nanocrystals are three dimensionally aligned with respect to the crystal lattice. Infrared reflectance measurements show the surface phonon mode of GaAs nanocrystals and it agrees well with the value predicted by Fröhlich's theory of surface phonons. Also, strong inhomogeneous broadening is observed for the GaAs nanocrystals isolated in SiO₂ as compared to the Al₂O₃ matrix. The presence of the nanocrystals was confirmed by TEM, XRD and infrared spectroscopy.

3.4 Gallium Phosphide and Indium Phosphide
Both InP and GaP were synthesized in silica by sequential ion implantation. Quantum confinement effects were observed in the electronic spectra. Infrared spectroscopy revealed the surface phonons of both materials and were found to be in good agreement with Fröhlich's theory. TEM images of InP showed extensive twinning among the nanocrystals. X-ray diffraction measurements confirmed that InP had been formed.

3.5 Lead Sulfide
Nanocrystals of this narrow gap semiconductor were fabricated in (111) cut CaF₂ single crystals. The appearance of a peak near 600 nm for the sequentially implanted substrate suggested quantum confinement. The peak blueshifted as the ion dose decreased which is consistent quantum confinement theory.

3.6 Selenium
Selenium was implanted into fused silica at dose of 1x10¹⁷ ions/cm² and annealed at 600, 800, and 1000°C. The optical spectra showed an absorption onset near 2.5 eV that redshifted as the annealing temperature increased. This absorption onset is consistent with the bulk value (no quantum confinement effects) expected for trigonal selenium. However, selenium also exists in a monoclinic form which has a band gap of 1.95 eV suggesting that the absorption onset of 2.5 eV could be attributed to quantum confined monoclinic selenium.

4. Students
Christopher Hall completed his M.S. in the spring semester of 1996. His masters thesis was on Indium Phosphide quantum dots formed by ion implantation fused silica. He has been accepted at Meharry Medical School where he is currently a student. A new graduate student, Taravia Taylor just joined the group and will work on nanocrystal research. Ms. Taylor should graduate in Fall 1999.

Last summer, four students Osaze Scott, Mike Mackay, Omari Jones, and Angela Allen participated in a summer intern program sponsored by NSF. All four students worked on nanocrystals and Osaze
Scott and Mike Mackay shared authorship on a paper entitled “Gold Implanted Calcium Fluoride Single Crystals: Optical Properties of Ion Induced Defects and Metal Nanocrystals” published in Materials Forum 239-241, 695 (1997). Two new summer interns are expected for this year and will work on nanocrystals.

6. Publications

“Linear and Nonlinear Optical Response of Bismuth and Antimony Implanted in Silica: Annealing

