DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
Calorimetric Assay of 60Co Sources from C-Overbore Facilities

The document titled "Calorimetric Assay of 60Co Sources from C-Overbore Facilities" contains information affecting the national defense of the United States within the meaning of the Espionage Laws, Title 18, U.S.C., Secs. 793 and 794, the transmission or revelation of which in any manner to an unauthorized person is prohibited by law.

Author: K. B. Sowa

Route To: Battelle-Northwest

Payroll No.: 30948

Location: 326

Files Route Date: Jan 1, 1970

The document is classified and must not be left unattended or where an unauthorized person may have access to it. When not in use, it must be stored in an approved locked repository within an approved guarded area. While it is your possession, until you have returned a signed receipt for the classified files, it is your responsibility to keep it and its contents within the limits of the project and from any unauthorized person. Its transmission to, and storage at your place of residence is prohibited. Neither is it to be duplicated. If additional copies are required, obtain them from the designated issuing file. All persons reading this document are requested to sign in the space provided below.

The document is declassified.
This document classified by

Hanford Category C65

This document contains restricted data defined in the Atomic Energy Act of 1954. Neither is it to be divulged to the public nor is it to be communicated to an unauthorized person.

CALORIMETRIC ASSAY OF 60Co SOURCES FROM C-OVERBORE FACILITIES

K. B. Sowa
December 18, 1969

Classification Cancelled and Changed To

DECLASSIFIED

By Authority of J. S. Buckingham
CG-AMP-1, 10-26-64

Verified by: WA Stovall 13-18-64

NOT UCN

DISTRIBUTION

AEC-RL
1. RL Plum
2. JP Stewart
3. DM Smith

BATTelle-NORTHWEST
4. DE Baker
5. CE Vogel

DUN
6. LV Barker
7. EC Bennett
8. DW Bennett
9. RA Chitwood
10. RG Clough, Jr.
11. AE DeMers
12. TL Deobald
13. KE Fields
14. EJ Filip
15. GC Fullmer
16. DW Haase
17. HW Heacock
18. CW Kuhlman
19. LE Kusler
20. AR Maguire
21. DW Peacock
22. LA Pennick
23. HW Reid
24. JW Riches
25. RK Robinson
26. JT Stringer
27. RV Skinner
28. KB Sowa
29. HF Tev
30. WK Woods
31. PJ Zimmerman
32. DUN File
33. DUN Record

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
CALORIMETRIC ASSAY OF 60Co SOURCES
FROM C-OVERBORE FACILITIES

INTRODUCTION

Cobalt irradiations were completed in two C-Reactor overbore tubes in support of Mission and Program investigations of isotope production. Tubes 1459 and 1464 were each charged with approximately 4015 grams of cobalt in strips similar to BNL pieces described in a separate report. After discharge, the strips were placed in an underwater calorimeter to determine the heat contribution from isotopic decay, thereby allowing an assay of cobalt-60 concentrations. The cobalt-60 produced in tube 1464-C was retained by Douglas United Nuclear for source material in an underwater gamma irradiator at KE-Reactor; the remaining cobalt, from tube 1459-C, was shipped to Battelle-Northwest for further experiments and applications.

SUMMARY OF RESULTS

A total of 396,400 Ci of cobalt-60 was produced in tube 1459-C and 272,700 Ci in tube 1464-C during the irradiations. Production in tube 1459-C occurred at the rate of 0.637 Ci/gm per 100 MWD/T of adjacent tube power; production in tube 1464-C occurred at the rate of 0.670 Ci/gm per 100 MWD/T of adjacent tube power. The total irradiation time was 880,813 full power days for tube 1459-C and 569,010 full power days for tube 1464-C.

TEST DETAILS

The irradiations were authorized in October, 1965 under Production Test IP-812. The high purity strips, averaging 66.92 grams each, were clad in 0.015 inch thick stainless steel jackets. Each cobalt strip was about 0.06 inch thick by 0.64 inch wide and 12 inches long before cladding. After careful tests and inspections, these strips were canned in aluminum holders that were weld sealed (see Figure I). Total assembled length of each holder was approximately 13-1/4 inches. Four strips were canned in each holder, which resulted in an average loading density of 242.4 grams per foot.

Fifteen can assemblies were charged into tube 1464-C on November 24, 1965 and an additional fifteen into tube 1459-C on December 6, 1965. Both charges were centrally located in the tubes and occupied only 199 inches of a total estimated active zone length of 317 inches. Aluminum dummies were charged in the remaining portions of each tube. Tube 1464-C was discharged on January 19, 1968 and the strips were removed from the cans for application in an underwater gamma irradiator at KE-Reactor. This removal caused a loss of charge position data, and the subsequent calorimeter readings could not be correlated to specific can numbers. Tube 1459-C was discharged over a year later on April 15, 1969 and the cans were preserved intact for charge position and power correlation. In calculating the production rate for 60Co in tube 1464-C, the isotopic heat generation curve was assumed to approximate that measured for tube 1459-C (see Figure III). The calorimetric assays of all strips were complete in July, 1969.
The underwater calorimeter in the 105-C Fuel Examination Facility basin converts 99 per cent of the gamma radiation from cobalt sources to heat by absorption in a lead calorimeter. A surrounding copper thermal shield is automatically heated to maintain a zero temperature differential between itself and the lead, thereby simulating an adiabatic system. Under these conditions, the temperature rise of the lead is linear with time and the amount of power input is determined by measuring the rate of this temperature rise. Total measurement error is less than 3 per cent. Calorimeter data as a function of charge position is plotted in Figure III for tube 1459; all other data is shown in Figure II.

REFERENCES

2T. L. Deobald, Production Test IP-812, Cobalt Pilot Irradiations in the Hanford C Reactor.
Aluminum can 1.75" OD by 1/8" wall

Aluminum core

Cobalt strips 0.60" wide by 0.060" thick by 12" long with .015" S.S. cladding

Welded end cap

FIGURE I
<table>
<thead>
<tr>
<th>PIECE NO.</th>
<th>TUBE NO.</th>
<th>CHARGE DATE AND TIME</th>
<th>DISCHARGE DATE AND TIME</th>
<th>FULL POWER DAYS</th>
<th>AVERAGE ADJACENT Tube Power KW</th>
<th>Watts at Discharge CI/gm*</th>
<th>Adjacent "E" Metal Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 thru 15</td>
<td>1464</td>
<td>11/24/65-1330</td>
<td>11/19/68-1600</td>
<td>569.0102</td>
<td>1365</td>
<td>4154(total) 67.3(Avg) 6 Columns</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1459</td>
<td>12/6/65-0350</td>
<td>4/15/69-0400</td>
<td>880.8130</td>
<td>1346</td>
<td>283</td>
<td>68.7</td>
</tr>
<tr>
<td>17</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>18</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>19</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>20</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>21</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>22</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>23</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>24</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>25</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>26</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>27</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>28</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>29</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>30</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
</tbody>
</table>

*Conversion Factor; 1 Watt = 65 curies

FIGURE II
Heat Generation of Cobalt-60 in Watts
(267.68 Grams of Cobalt per piece)

+16 = Piece Number

Figure III

Estimated Distance in Inches from Upstream Edge of Graphite Stack to Center of Cobalt Holders
Tube No. 1459