Improvement of Wear Component’s Performance by Utilizing Advanced Materials and New Manufacturing Technologies: CastCon Process for Mining Applications

Quarterly Technical Progress Report
for the period starting October 1, 2001, ending December 31, 2001

Xiaodi Huang and Richard Gertsch

Michigan Technological University
1400 Townsend Drive
Houghton, MI 49931-1295

December 31, 2001

DE-FC26-01NT41055

DISCLAIMER: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its indorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Abstract

The microstructure and mechanical properties of a specimen HIPped at 1100°C under 60 ksi were examined. The examinations indicated that the proper HIPping temperature for this material should be higher than 1100°C. New recipe of monolithic material was developed and presented better extrusion homogeneity and less binder removal defects. However, cracking still occurred in specimens although very slow heating rate of 0.25°C/min for binder burnout was used.
Table of Contents

Experiment ... 1
 Microstructure and mechanical properties of HIPped specimen 1
 Extrusion improvement .. 1
 Binder removal and sintering .. 1
Results and Discussion .. 1
 Microstructure and mechanical properties of HIPped specimen 2
 Extrusion improvement .. 6
 Binder removal and sintering .. 7
Conclusion .. 8

List of Tables

Table 1. ACR-B1-HIP-1 hardness test results (1100°C sintering + 1100°C HIPping) .. 3
Table 2. Shrinkage and porosity .. 7

List of Figures

Figure 1. ACR-B1-HIP-1-N-a1 .. 2
Figure 2. ACR-B1-HIP-1-N-a2 .. 2
Figure 3. ACR-B1-HIP-1-N-a3 .. 2
Figure 4. ACR-B1-HIP-1-P-a1 .. 2
Figure 5. ACR-B1-HIP-1-P-b1 .. 2
Figure 6. ACR-B1-HIP-1-P-c1 .. 2
Figure 7. ACR-B1-HIP-1-P-d1 .. 3
Figure 8. ACR-B1-HIP-1-P-e1 .. 3
Figure 9. ACR-B1-HIP-1-N-ID-a1, 20 kg. 4
Figure 10. ACR-B1-HIP-1-N-ID-a2, 20 kg. 4
Figure 11. ACR-B1-HIP-1-N-ID-b1, 20 kg. 5
Figure 12. ACR-B1-HIP-1-N-ID-b2, 20 kg. 5
Figure 13. ACR-B1-HIP-1-N-ID-c1, 50 kg. 5
Figure 14. ACR-B1-HIP-1-N-ID-c1, 50 kg. 5
Figure 15. ACR-B1-HIP-1-N-ID-a1, 50 kg. 5
Figure 16. ACR-B1-HIP-1-P-IN-a1, 20 kg. 5
Figure 17. ACR-B1-HIP-1-N-ID-b1, 50 kg. 6
Figure 18. ACR-B1-HIP-1-N-ID-b1, 50 kg. 6
Figure 19. ACR-B1-HIP-1-N-ID-c1, 50 kg. 6
Figure 20. ACR-B1-HIP-1-N-ID-d1, 20 kg. 6
Figure 21. ACR-B2-SIN-1 .. 7
Figure 22. ACR-B2-SIN-2 .. 7
Figure 23. ACR-B2-SIN-1 (left) and ACR-B2-SIN-2 (right) 8
Figure 24. ACR-B2-SIN-4 .. 8
Figure 25. ACR-B2-SIN-3 .. 8
Experiment

During the last quarter, a fibrous monolithic material with a good combination of hardness and fracture toughness was successfully produced by hot pressing at 1150°C under 5 ksi. The sample shows the potential of better mechanical properties than the conventional WC/cobalt materials. Drill bit buttons made of this material will be produced either by pressureless sintering or hot isostatic pressing in a commercial production. Our industrial partner, ACR, prefers pressureless sintering because of lower production cost. However, the extrusion manufacturing and complex microstructure of the monolithic material may cause difficulty of consolidation. Hot isostatic pressing is an alternative route to overcome the difficulty but with a price of higher production cost.

The experiment conducted in this quarter aimed at 1) evaluating the mechanical properties of a HIPped sample, 2) improving extrusion process, and 3) refining binder removal and sintering process.

Microstructure and mechanical properties of HIPped specimen

The specimen (ACR-B1-HIP-1) HIPped at 1100°C under 60 ksi during the last quarter was cut into halves, one for the examination on the cross-section normal to the extrusion axis and one for the examination on the cross section parallel to the extrusion axis. The two resulting specimens were mounted, polished, tested using a Vicker’s hardness tester and examined under a microscope.

Extrusion improvement

The microstructure of the first batch of fiber reinforced material was not homogeneous. ACR changed the recipe and optimized the extrusion procedure for the second batch. The second batch contained 94 wt% WC + 6 wt% cobalt in the cells and 17.5 vol% cobalt in the shells.

Binder removal and sintering

The binder in the fiber reinforced material needs to be removed by slow burning. The space left over by the binder need to be closed by sintering. Specimens after binder removal and sintering process conducted in the last quarter showed bubbles and cracks on surfaces and bodies. Several specimens were processed at lower heating rates and sintered at different temperatures in a vacuum furnace in this quarter to see if this problem can be solved.

Results and Discussion

Microstructure and mechanical properties of HIPped specimen

Figs 1 to 3 show the microstructure of the cross-section normal to the extrusion axis. The hexagonal WC/cobalt fibers are bundled by cobalt shells (Fig 1). The shells are very thin (Fig 2). Remaining pores can be seen in Figs 2 and 3, which mean that the HIPping temperature is not high enough to
close the pores. Figs 4 to 8 show the microstructure of the cross-section parallel to the extrusion axis. The cobalt lines (shells) are not parallel well (Figs 4). Some lines are much thicker in some regions and some lines are broken (Fig 6). Remaining pores also can be seen in Fig 8.

Figure 1. ACR-B1-HIP-1-N-a1

Figure 2. ACR-B1-HIP-1-N-a2

Figure 3. ACR-B1-HIP-1-N-a3

Figure 4. ACR-B1-HIP-1-P-a1

Figure 5. ACR-B1-HIP-1-P-b1

Figure 6. ACR-B1-HIP-1-P-c1
Table 1 gives the Vicker hardness test results. The hardness is lower than 1157 of the specimen produced by hot pressing. Microscope observation on the indents show that many cracks are generated near the tips of indents or along the cobalt line (Fig 9 to 15, 18 and 20). Higher load indentation produced irregular shapes of indents. It is obvious that some material underneath the indents are collapsed (Figs 16, 17 and 19), which indicates that pores may exist there. In comparison with the specimen produced by hot pressing, the hot pressed specimen has no cracks after indentation test but this HIPped specimen has many cracks. This means the HIPped specimen has much lower fracture toughness. All microstructure and mechanical test results tell that the specimen is not fully dense and porosity is the main reason to cause unsatisfied mechanical properties. To solve the problem, increasing HIPping temperature should be the first choice to close the remaining pores.

<table>
<thead>
<tr>
<th>NORMAL TO EXTRUSION AXIS</th>
<th>Vicker Hardness</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 kg load</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1213</td>
</tr>
<tr>
<td>2</td>
<td>1013</td>
</tr>
<tr>
<td>3</td>
<td>1063</td>
</tr>
<tr>
<td>4</td>
<td>1135</td>
</tr>
<tr>
<td>5</td>
<td>977</td>
</tr>
<tr>
<td>Average</td>
<td>1080</td>
</tr>
<tr>
<td>50 kg load</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1062</td>
</tr>
<tr>
<td>2</td>
<td>831</td>
</tr>
</tbody>
</table>

Table 1. ACR-B1-HIP-1 hardness test results
(1100°C sintering + 1100°C HIPping)
Table 1. ACR-B1-HIP-1 hardness test results
(1100°C sintering + 1100°C HIPping)

<table>
<thead>
<tr>
<th>Orientation to Extrusion Axis</th>
<th>Vicker Hardness</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORMAL TO EXTRUSION AXIS</td>
<td>1000</td>
</tr>
<tr>
<td>Average</td>
<td>964</td>
</tr>
<tr>
<td>PARALLEL TO EXTRUSION AXIS</td>
<td></td>
</tr>
<tr>
<td>20 kg load</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1154</td>
</tr>
<tr>
<td>2</td>
<td>570</td>
</tr>
<tr>
<td>3</td>
<td>1134</td>
</tr>
<tr>
<td>4</td>
<td>1105</td>
</tr>
<tr>
<td>5</td>
<td>915</td>
</tr>
<tr>
<td>Average</td>
<td>976</td>
</tr>
<tr>
<td>50 kg load</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>925</td>
</tr>
<tr>
<td>2</td>
<td>collapsed</td>
</tr>
<tr>
<td>3</td>
<td>collapsed</td>
</tr>
</tbody>
</table>

Figure 9. ACR-B1-HIP-1-N-ID-a1, 20 kg.

Figure 10. ACR-B1-HIP-1-N-ID-a2, 20 kg.
Figure 11. ACR-B1-HIP-1-N-ID-b1, 20 kg.

Figure 12. ACR-B1-HIP-1-N-ID-b2, 20 kg.

Figure 13. ACR-B1-HIP-1-N-ID-c1, 50 kg.

Figure 14. ACR-B1-HIP-1-N-ID-c1, 50 kg.

Figure 15. ACR-B1-HIP-1-N-ID-a1, 50 kg.

Figure 16. ACR-B1-HIP-1-P-IN-a1, 20 kg.
ACR: material prepared by ACR.
B1: batch one.
HIP: consolidation by HIP.
1: first HIP.
N: specimen cross section normal to the extrusion axis.
P: specimen cross section parallel to the extrusion axis
ID: after indentation.
a1: spot a, photo 1.
a2: spot a, photo 2.

Extrusion improvement

ACR designed a new recipe and produced a 0.865" in diameter and 4" long bar from the second batch of material. Cross-section examinations (Fig 21 and 22) show great improvement of extrusion homogeneity.
Binder removal and sintering

Table 2 gives the binder removal and sintering test results. Slowing heating rate did reduce cracking as seen in comparison of ACR-B2-SIN-1 with ACR-B2-SIN-2 in Fig 23. However, cracks still can be found even at very slow heating, 0.25°C/min as seen in Fig 24. High sintering temperature (1300°C) seemly produced relatively large channels as shown in Fig 25.

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Processing</th>
<th>Ini. Thick in</th>
<th>Ini. Dia. in</th>
<th>Fin. Thick in</th>
<th>Fin. Dia. in</th>
<th>Thick Shrink %</th>
<th>Dia. Shrink %</th>
<th>Dry Wt g</th>
<th>Impreg. Wt g</th>
<th>Satura. Wt g</th>
<th>Wire Wt g</th>
<th>App. Poros. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR-B2-SIN-1</td>
<td>25-500°C: 1°C/min 500°C: 30 minutes 500-1100°C: 10°C/min 1100°C: 60 minutes</td>
<td>0.235</td>
<td>0.865</td>
<td>0.233</td>
<td>0.820</td>
<td>0.85</td>
<td>5.2</td>
<td>16.4664</td>
<td>15.3867</td>
<td>16.9680</td>
<td>.2617</td>
<td>27.22</td>
</tr>
<tr>
<td>ACR-B2-SIN-2</td>
<td>25-500°C: 0.5°C/min 500°C: 30 minutes 500-1100°C: 10°C/min 1100°C: 60 minutes</td>
<td>0.235</td>
<td>0.865</td>
<td>0.229</td>
<td>0.800</td>
<td>2.55</td>
<td>7.5</td>
<td>16.4682</td>
<td>15.2670</td>
<td>16.7835</td>
<td>.2617</td>
<td>17.73</td>
</tr>
<tr>
<td>ACR-B2-SIN-3</td>
<td>25-500°C: 0.5°C/min 500°C: 30 minutes 500-1300°C: 10°C/min 1300°C: 60 minutes</td>
<td>0.235</td>
<td>0.865</td>
<td>0.208</td>
<td>0.708</td>
<td>11.49</td>
<td>18.15</td>
<td>16.3180</td>
<td>15.3612</td>
<td>16.3781</td>
<td>.2617</td>
<td>4.70</td>
</tr>
<tr>
<td>ACR-B2-SIN-4</td>
<td>25-500°C: 0.25°C/min 500°C: 30 minutes 500-1250°C: 5°C/min 1250°C: 60 minutes</td>
<td>0.25</td>
<td>0.865</td>
<td>0.221</td>
<td>0.723</td>
<td>11.60</td>
<td>16.42</td>
<td>17.3701</td>
<td>16.3890</td>
<td>17.5005</td>
<td>.3216</td>
<td>9.10</td>
</tr>
<tr>
<td>ACR-B2-SIN-5</td>
<td>25-500°C: 0.5°C/min 500°C: 30 minutes 500-1100°C: 5°C/min 1100°C: 60 minutes</td>
<td>0.25</td>
<td>0.865</td>
<td>0.242</td>
<td>0.802</td>
<td>3.59</td>
<td>7.28</td>
<td>17.5668</td>
<td>16.5334</td>
<td>18.1313</td>
<td>.3216</td>
<td>29.41</td>
</tr>
<tr>
<td>ACR-B2-SIN-6</td>
<td>25-500°C: 0.5°C/min 500°C: 30 minutes 500-1100°C: 5°C/min 1100°C: 60 minutes</td>
<td>1.25</td>
<td>0.865</td>
<td>1.162</td>
<td>0.822</td>
<td>7.04</td>
<td>4.97</td>
<td>87.9490</td>
<td>81.3095</td>
<td>90.8000</td>
<td>.3216</td>
<td>29.06</td>
</tr>
</tbody>
</table>

Table 2. Shrinkage and porosity
Conclusion

HIPping temperature higher than 1100°C is required to achieve fully dense monolithic material. Heating rate slower than 0.25°C/min from 25°C to 500°C is not sufficient to prevent cracking. Extrusion homogeneity can be improved.