
SAND REPORT
SAND 2002-2917
Unlimited Release
Printed September 2002

SOftW?"

Edw

PA0 871 85 and LNWlll
,ies

r Contract DE-ACOC

Tdational Laboratories
.: ~

Issued by Sandia National Laboratories, operated for the United States Department of Energy by
Sandia Corporation.

NOTICE This report was prepared as an account of work sponsored by an agency of the United

their employees, nor any of their contractors, subcontractors, or their employees, make any war-
States Government. Neither the United States Government, nor any agency thereof, nor any of

ranty, express or implied, or assume any legal liability or responsibility for the accuracy, complete-
ness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its
use would not infringe privately owned rights. Reference herein to any specific commercial prod-
uct, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Govern-
ment, any agency thereof, or any of their contractors or subcontractors. The views and opinions
expressed herein do not necessarily state or reflect those of the United States Government, any
agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
US. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)57&8401
Facsimile: (865)576-5728
E-Mail: rewrts@adonis.osti.eov
Online ordering: http:Nwww.doe.eovlbndge

Available to the public from
US. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield. VA 22161

Telephone: (800)553-6847
Facsimile: (703)60-6900
E-Mail:
Online order: ht~://www.ntis.eov/helo/ordermethods.as~?loc=7-4-O~nline

orders~ntis.fedworld.eov

http:Nwww.doe.eovlbndge

SAND200229111
Unlimited Release

Printed August 2002

Developing an Event-Driven
Generator for User Interfaces

in the Enter0 Software

Edwin S. Wong
Sandia National Laboratories

Computational Sciences Department
P.O. Box 5800, MS 0196

Albuquerque, NM 87185-0196

Abstract
The Entero Software Project emphasizes flexibility, integration and scalability in
modeling complex engineering systems. The GUIGenerator project supports the
Entero environment by providing a user-friendly graphical representation of
systems, mutable at runtime. The first phase requires formal language specifica-
tion describing the syntax and semantics of extensible Markup Language

tem, front end user interaction with stored system data occurs through Java
(XML) elements to he utilized, depicted through an XML schema. Given a sys-

Graphical User Interfaces (Gus), where often only subsets of system data re-
quire user input. The second phase demands interpreting well-formed XML
documents into predefined graphical components, including the addition of fixed
components not represented in systems such as buttons. The conversion proc-
ess utilizes the critical features of JDOM, a Java based XML parser, and Core
Java Reflection, an advanced Java feature that generates objects at runtime using
XML input data. Finally, a searching mechanism provides the capability of
referencing specific system components through a combination of established
search engine techniques and regular expressions, useful for altering visual
properties of output. The GUIGenerator will be used to create user interfaces
for the Entero environment’s code coupling in support of the ASCI Hostile En-
vironments Level 2 milestones in 2003.

Acknowledgments
The author thanks David R. Gardner of the Computational Sci-
ences Department for providing feedback for this report and Jo-
seph P. Castro and Mark A. Gonzales for their technical expertise
regarding the Enfero Software Project.

Contents

Conventions ... 6

Overview ofthe Enter0 Software Project ... 7
Flexible Data Modeling with XML ... 7
GUIGenerator Purpose and Overview .. 7
Design Requirements .. 8

Modules 9

XML Fundamentals 10

GUIGenerator Vocabulary Specification .. 11
Defining Modules .. 12
AttributeSet Element ... 12
Fixed Field Elements ... 13
Section Elements Nested within Other Sections ... 14

SAX - Simple API for XML ... 14
XML Validation .. 16
DTD or XML Schema ... 16

Output “Look and Feel” .. 16
Core Java Reflection ... 17
Application of Properties .. 19
Putting It All Together .. 20

Parsing Expressions ... 23
Parsing States .. 24
Constructing the Binary Tree .. 24
Complete Binary Tree Example .. 25
Evaluating the Binary Expression Tree ... 28
Rightmost Matching .. 28

1 Introduction ... 7

2 Overview of the Enter0 Architecture ... 8

3 Flexible Data Modeling with XML 9

4 Syntax and Semantics of GUIGenerator XML 11

...
..

... ..

5 Event Driven XML Interpretation .. 14

6 Java Graphical Output ... 16

7 Searching Mechanism for PrimitiveModules ... 21

8 Complete Example .. 28
9 Summary .. 33

References .. 34

Appendix A . Document Type Definition (DTD) of GUIGenerator XML 35
Appendix B . XML Schema of GUIGenerator XML .. 36
Appendix C . GUI Generating Process Diagram .. 39
Appendix D . Sample GUI from the Enter0 Software ... 40

Figures

1 Enter0 High Level Architectural View .. 8
2 Enter0 Modules .. 9
3 Simple XML Example ... 10

5 Complete Sample of GUIGenerator XML .. 12
6 Fixed Field XML and GUI Output .. 14
7 High Level Overview of GUI Generating Process ... 15
8 Visual Representation of Section Properties ... 18
9 Conceptual Representation of Section Nesting ... 21
10 Example GUI Output of a PrimitiveModule ... 21

12 Example Binary Tree .. 23
13 Boolean Expression Parsing Example, Step 1 .. 26
14 Boolean Expression Parsing Example. Step 2 .. 26
15 Boolean Expression Parsing Example, Step 3 .. 27
16 List Contents of Parent Section in Complete Example ... 29
17 List Contents of Child Section 1 ... 30
18 Attribute View of Geometry OD PrimitiveModule ... 30
19 Component Vector of Geometry OD PrimitiveModule ... 31
20 GUI Output of Child Section 1 ... 31
21 List Contents of Child Section 2 ... 31
22 GUI Output of Child Section 2 ... 32
23 Final GUI Output for Complete Example ... 32

4 Sample XML for Records ... 1 1

11 Searching Mechanism Syntax ... 22

Conventions

Courier IO poin t font represents a Java class
Italicized Courier 10 point font represents aXML element
Bold face Courier 10 point font represents an XML attribute

1 Introduction

Overview of the Enter0 Software Project

The Enter0 Software Project [6], [7] emphasizes flexibility, integration and scalability in aiding
engineers with modeling complex systems. The modeling of these systems is done through a
module-oriented, multiphysics, mixed-fidelity environment, allowing systems to be analyzed
from different perspectives.

The fundamental entity of the Enter0 architecture, called the Module, emphasizes flexibility, and
can be divided into two categories: PrimitiveModule and CompositeModule [3] . Primitive-
Modules encapsulate the physical properties of a system, which are Attributes. For example, a
thermal module encapsulates data pertaining to temperature. CompositeModuleS conceptually
represent containers holding PrimitiveModuleS or other CompositeModuleS. Engineers often
conceptualize systems differently from one another, and the ability to model systems as parts
through Modules provides the flexibility Enfero was designed to provide.

Flexible Data Modeling with XML

Representation of data usin extensible Markup Language (XML) [2] complements the cross-
platform flexibility of Java . Currently, data representing Enter0 systems is stored using XML
in order to prevent object-data dependencies [3] . The definition and nesting capabilities of XML
inspired the idea of representing graphical user interfaces (GUIs) through XML.

A

GUIGenerator Purpose and Overview

Given the diverse systems that Enter0 integrates, hard coding GUIs for each system would be
time inefficient and impractical, thus a dynamic interface for quickly representing a system
graphically was required. The GUIGenerator software was developed to address these issues.
The primary reason for the GUIGenerator is to aid developers of Entero by providing a general
mechanism for creating a GUI for any system. In addition, engineers using the software would
benefit from the ability to graphically represent a system to their specification. The dynamic
GUIGenerator will become a valuable part of the Enter0 software as software requirements con-
tinue to grow.

The notion of dynamically generating GUIs from XML documents is not exclusive to Entero.
The Sandia MAUI project [14]&rovides an interface for creating general Java GUIs through
XML documents. Java’s Forte software [5] represents GUIs generated from its wizards
through XML. Nevertheless, MAUI, Forte and other dynamic GUI generators could not incorpo-
rate the Enter0 architecture, and so the GUIGenerator was developed.

The Enter0 GUIGenerator is a Java utility that dynamically generates a graphical user interface
based on existing Enter0 system models. The GUIGenerator emulates the features of software
such as MAUI, but specifically implements the Enfero architecture and specialized GUI compo-

nents. The user specifies the appearance of the GUI through a well-formed XML document that
defines visual properties and the system components to display.

Design Requirements 1

The GUIGenerator needed to closely resemble the architecture of Entero, while maintaining a
conceptually simple design. The specifications called for a general method to dynamically inter-
change system components within a GUI through XML in order to accommodate the flexible
needs of developers and engineers. GUIs needed to reflect PrirnitiveModuleS and incorporate
the ability to manually insert fixed components such as buttons and labels. While implementing
this design goal, an additional requirement of specifying a simple but powerful XML vocabulary
arose. The representative XML needed to be both simple and powerful, while conceptually par-
alleling the Enter0 architecture. Finally, developers needed a method to filter out irrelevant com-
ponents through a searching mechanism also implemented within the XML.

2 Overview of the Enter0 Architecture
The Enfero software environment aims to assist engineers in modeling a wide range of complex
systems emphasizing flexibility, integration and scalability. The modeling of these systems is
done through a module-oriented, multiphysics, mixed-fidelity environment [6].

Figure 1. Entern’s high level architecture consists of three compositional layers.

In order to model systems of varying complexity, Enter0 needed a flexible, scalable and extensi-
ble software architecture. The Enter0 environment, from a high-level view, implements its flexi-
ble goals through its tri-layer composition, each layer dependent upon a lower layer illustrated in

8

i

Figure 1. First, the GUI layer delineates the top level of user interaction where users manipulate
data, systems, mechanisms, etc. Below the GUI layer is the Business layer representing the ar-
chitectural components that provide the fundamental structure to systems within Entero. Access
is one way: the GUI layer accessing the Business layer, thereby preventing component depend-
encies. Finally, the Mechanism layer is the lowest layer, providing mechanisms for the Business
layer. For example, the JSX mechanism [12] that is discussed in Section 5 resides within the
Mechanism layer, utilized by the Business layer.

Modules

The GUI layer will be the basis of the majority of this report, but the architectural aspects of the
Business layer deserve consideration. The fundamental object of the Business layer is an entity
called the Module. As illustrated in Figure 2, Enter0 Modules can be divided into two categories:
PrimitiveModuleandCompositeModule.

I
I

7
PrimitiveModule

P-

F
- CornpositeModutes contain other Attributes contain cystern data

such as temperature and time CompositeModutes and PrKnitiveModules

Figure 2. Illustration of the relationship between Enter0 Modules.

PrimitiveModuleS encapsulate the physical properties of a system referred to as Attributes.
Moreover, the PrimitiveModule is bound to specific pre-defined categories or ModuleType that
represent data within the module. For example, a thermal PrimitiveModule encapsulates data
pertaining to temperature. CompositeModuleS conceptually represent containers holding Primi-
tiveModuleS or other CompositeModules, and often represent physical components. Modules
provide flexibility through composition and the ability to easily add or remove parts from a par-
ticular system, one of the motivating factors for the GUIGenerator.

3 Flexible Data Modeling with XML
Representation of data using XML embodies an emerging category of computing, complement-
ing the cross-platform flexibility of Java. With the goals of Enter0 i n mind, the developers de-
signed an improved software architecture that emulates more of a library environment than a

9

framework environment [7]. The Enter0 code needed to be dynamic and scalable, focusing more
on flexibility than performance. Similarly, developers also saw the need to clearly divide data
from code, in order to prevent object-data dependencies. All data structures are stored using
XML, which provides the ability for modules to be loaded and altered at runtime.

The ability to provide engineers with the flexibility to refashion models extended down to the
front end of the software. After a system has been loaded, an engineer may choose to only work
with a subset of properties from the system. In addition to representing data with XML, the op-
portunity arose to represent GUIs with XML. In this manner, engineers would be able to config-
ure a model without recompiling code. Moreover, XML suited the task due to its flexibility in
data formatting and similarity to the Enter0 architecture. With the ability to nest and define the
contents of the GUI with a powerful set of XML elements, the user easily has complete control
over what is displayed.

XML Fundamentals

XML resembles the syntax of the familiar Hyper Text Markup Language (HTML) [9] native in
generating Internet webpages. However, XML excels by allowing developers to define custom
syntax and semantics based on XML purpose. The primary advantage of XML resides in its
flexible ability to interpret any document that is well-formed. Well-formed XML consists of
several features that will be referred to while describing the syntax and semantics of GUIGenera-
tor XML. An XML tag consists of a textual name enclosed within angle brackets (e >). An
XML tag must be terminated by a corresponding tag with the same name, but containing a for-
ward slash pre-appended to the name. For example, the XML in Figure 3 depicts three tags
named GUIGenerator, Module and Section respectively.

CGUIGeneratorz
<Section>
<Module/>
</Section>

c/GUIGenerator>

Figure 3. Sample GUlGenerator XML
demonstrating fundamentals.

Tags constitute the fundamental entities of XML, but form a more complex entity called an ele-
ment. XML elements are collections of information within the scope of a beginning and termi-
nating XML tag. For example, the sample XML in Figure 3 contains five distinct XML tags
(cGUIGenerator>, <Section>, <Module/>, </Section>, c/GUIGenerator>). However, XML
elements refer to an actual tag in addition to all the information contained within the tag’s scope.
The GUIGeneratorelement contains three tags (<Section>, <Module/>, </Section>) be-
tween its beginning (cGUIGenerator>) and terminating (</GUIGenerator>) tag. The <Mod-
ule/> tag is self terminating, indicating the beginning and termination of an element with one
tag

XML elements may contain other XML elements within their scope, referred to as children, tex-
tual data, both or neither. Unless otherwise specified, XML elements may include an infinite

10

number of child elements, where those child elements may contain an infinite number of chil-
dren, etc. In addition, XML attributes, distinct from fntero Attributes, provide another method
of embedding information. XML attributes reside within the angle brackets of an element, con-
tain a name followed by an equal character (=) and a value in double quotes. The example in
Figure 4 illustrates a common use of XML and its nesting abilities to represent records. The Re-
cord element is the root of the XML document, where Record's children represent aspects of the
entire record. In addition, the type attribute provides further information, indicating that this
record is for a student. The Name element represents a further division, where the name consists
of a First, Middle and Last portion denoted through Name's child elements.

I <Record type="Student">
<Name>
cFirst,Johnc/First>
cMiddle>Fredc/Middle>
cLast>Srnithc/Last>

</Name>
cAddress>100 One Wayc/Address>' '

cCitv>DallasclCitv>

'
. ,~ ,

cFirst,Johnc/First>
cMiddle>Fredc/Middle
cLast>Srnithc/Last>

</Name>
cAddress>100 One Way<
cCitv>DallasclCitv>

!>

. ,~ ,

:/Address>
, .

cstSe,iexascjstate,
~Zips77717c/Zip~

</Record,

demonstrate "well-formed" syntax
Figure 4. Simple piece of XML code to

4 Syntax and Semantics of GUIGenerator XML

GUIGenerator Vocabulary Specification

The XML vocabulary for describing a system in terms of graphical components needed to be
simple, but powerful to prevent from overburdening users and developers. The vocabulary con-
tains less than twenty tags, many of which are optional properties such as spacing and alignment
described in Appendix A. Furthermore, the syntax needed to closely represent the final GUI
product conceptually.

Each GUIGenerator XML file begins with a document root element named GUIGenerator, and a
section root element that is the only child of GUIGenerator. The root Section element pro-
vides the parent container for all other components in the GUI. The optional properties ele-
ment denotes a portion of the XML where the GUI appearance may be altered. Although not in
the original GUIGenerator specification, user defined properties provide an enhancement toward
overall flexibility. Within a particular section, an infinite number Of Module, Field and Sec-
tion elements may be legally nested within a parent section element in any order following the
Properties element. For example, consider the annotated XML segment in Figure 5 .

11

<WIGenerator> I'

n~name="Teetl" lavout="Matrix"s

and Sub1 and Matrix
ara attribute values

cLabelsSubmitc/Labelz
.:Id elem .. -1 inserts

c/GUIGenerator>

Figure 5. Sample GUIGenerator XML that illustrates the well-formed XML. Output of this XML is in
Figure 9.

Defining Modules

The Module element directly relates to the PrirnitiveModule in the Enter0 system, establishing
the method of referencing system components. Module contains three XML attributes: name,
type and value, all of which are required in order to pinpoint the PrimitiveModule in a system.
The GUIGenerator PrimitiveModuleS utilize a system to reference properties encapsulated
within to gain further control of internal Enter0 Attributes. Module elements may contain only
Attributeset elements as children, but an infinite number of children may appear. For exam-
ple, the element

<Module name="NP Geometry OD" type="GeometryPMType" value="GeometryModule"/>

represents the addition of all the Attributes i n the PrimitiveModule named "NP Geometry
O D ' to the output CUI.

Attributeset Element

The Attributeset tag furnishes the method to filter out only necessary Module properties. The
Attributeset tag contains only two attributes, both optional. First, the name attribute requires a
string representing a syntactically correct boolean expression. The name attribute indicates
which properties in a PrimitiveModule to display, using module attribute names.

Correspondingly. the type attribute of the Attributeset element indicates which module at-
tribute types to display. When both attributes are listed, the two attributes are applied such that a
module Attribute must satisfy both the name and type constraints. The Module element is not

12

limited to one Attributeset child, but can have an infinite number O f Attributeset ekments
as children. In this case, each expression in respective Attributeset elements is applied such
that an Attribute will appear if the conditions in any one Attributeset element X e satisfied.
For example,

<Module narne="NP Geometry OD" type="GeornetryPMType" value="GeometryModule"/>
<Attributeset name="Radius" type="realnumber"/>
<Attributeset name="Height"/>
<Attributeset type="url"/>
</Module>

indicates any Attributes within the NP Geometry OD PrirnitiveModule must Satisfy at least
one of the following conditions:

1. Contains the word "Radius" and is of real number type
2. Contain the word "Height" and be of any type
3. Have any name and be of URL type

A detailed discussion on the parsing Of Attributeset elements occurs in Section 7.

Fixed Field Elements

During initial development, constructing the output GUI, only properties encapsulated within
Modules could be displayed, without any capability for addition of other fields that could assist
model representation. The idea of adding fixed components, not encapsulated in Primitive-
Modules, adds another feature demonstrating the GUIGenerator's flexibility. Fixed element ca-
pability, resembling HTML used in generating webpages, allows insertion of GUI components
not present in PrimitiveModuleS.

Similar to Section properties, fixed fields require user input to appear. Fixed field elements
contain up to five child elements, and three XML attributes to control output appearance. First,
the name attribute and rype element are required as the type determines the Enter0 GUI compo-
nent to display and the name is used internally to reference the component for manipulation pur-
poses such as adding ActionListenerS to the component.

The remaining six optional properties control the appearance of the component. Label, value
and m i t refer to the text associated with the component, corresponding to the "look and feel" of
standard components for Attributes. Size specifies the horizontal width of the component,
while layout and enabling correspond to the same properties as Section properties. The se-
lection of specifying the name, layout and enabled properties as attributes rather than child ele-
ments is aimed at consistency, as each of these three properties apply to other elements and are
specified through attributes. Figure 6 demonstrates the addition of a field through XML and the
corresponding GUI output.

13

<Field name="Net List" enabled="false" I
lavout="Horizontal"> I

1
<Type>ELibeledTextField</Type> I
<Label>Net List</Label>
<Value>LM185.cir</Value>

i i ~

Figure 6. Sample XML field declaration and corresponding GUI output.

Section Elements Nested within Other Sections

The ability to group objects together is critical in modeling a system, which groups components
together within the context of a Module. The section element and its corresponding Java GUI
container conceptually represent a CompositeModule.

During the parsing of a Section element, if another Section element that is a child of the cur-
rent Section element is encountered, the encountered child section element is processed im-
mediately before continuing with the parent element, through a recursive method call. A Java
BOX container is the output of the processsection 0 method, where the BOX itself may be han-
dled as a component added to another container. Therefore, the recursive call of a child Section
element results in another GUI component that will be added to the collection of components for
the parent section. Only when the parent section has processed all child elements, and collected
all components, does the GUIGenerator construct a Section.

5 Event Driven XML Interpretation
XML is the mechanism of data persistence for Enter0 models. Within the Enter0 architecture,
data stored through well-formed XML becomes transformed into Java through the JSX mecha-
nism [121. However, XML associated with the GUIGenerator requires parsing, but does not
translate into Java objects directly.

The high level process of generating a GUI using the GUIGenerator is shown in Figure 7. The
GUIGenerator implements the JDOM [13] parser, one of many implementation of the W3C
XML specification [4]. The general idea of JDOM exists in providing a lightweight, conceptu-
ally simple method of representing an XML document. Furthermore, JDOM exemplifies a
"Java-centric, high performance" [13] method of handling XML. The centralization of JDOM
with Java greatly increases usability within Java, despite the lack of usefulness in other plat-
forms. JDOM focuses around the Java developer, and elegantly represents an XML document
through conceptually discreet classes and methods. In addition, JDOM parses and generates na-
tive Javaobjectssuchas java.util.List or java.uti1.Map.

SAX - Simple API for XML

14

JDOM combines the many parsing techniques available, however, GUIGenerator performs pri-
marily the SAX [171 oriented features. The development of the SAX emerged due to the ineffi-
ciency of the other primary parsing method, the Document Object Model (DOM) [2]. DOM re-
quires significant memory overhead due to the need to traverse XML documents twice. Al-
though useful parsing using DOM exists, SAX better achieves the assignment of parsing docu-
ments of significant length.

Figure 7. Overview of GUI generating process

Parsing begins though instantiating one of the SAXBuilder constructors. Two optional parame-
ters may be supplied, a string indicating name of the parser class to use and a boolean flag indi-
cating whether validation should occur. The GUIGenerator simply utilizes the default parser
org . xml . sax. XMLReader, part of the Apache Xerces package [I] . Once instantiated, the
build () method converts an input stream into an org . j dom. Document. The Document class
defined by JDOM models the structure of an XML document by defining methods to access
element names, attributes, children and element data. Reference to the XML interpretation proc-
ess as “event driven” corresponds to the ability to extract XML document information when de-
sired through JDOM methods, gathering element names, attributes, children and data rather than
interpreting the entire document at once.

Once the SAXBuilder constructs the document tree from XML input, GUIGenerator extracts
elements recursively beginning with the parent section element. Utilizing the getchildren 0
method in the Element class returns a Java List storing all the child elements of the parent Sec-
tion element, while preserving the order in which elements occur in the document. The algo-
rithm for processing a Section element begins by checking for an initial Properties element,
and storing the children of the Properties element in a hashtable if present. Accessing proper-
ties in the hashtable occurs in the addcomponents () method, where the application of properties
occur with the addition of components to a BOX container. Refer to the Document Type Defini-
tion (DTD) of the XML vocabulary in Appendix A for a complete set of Section properties.

Once the collection of Section properties has been completed, the next step requires extracting
all remaining child elements, including any combination of Module, Field and nested Section
elements. An iterator traverses the remaining elements in the list, extracting information from
respective elements through member methods. Section elements nested within other section
elements are processed recursively, in order to preserve user defined section nesting.

15

XML Validation

The ability to verify the syntax of an XML file before parsing into a Document represents another
. advantageous feature of the JDOM package incorporated with SAX parsing. JDOM locates mal-
formed XML syntax, signaling mistakes to the user before execution begins. This validation
mechanism prevents costly runtime errors during XML processing, saving time with error han-
dling.

DTD or XML Schema

Document Type Definitions (DTDs) [2] and XML Schemas [2] are both techniques for verifying
XML syntax. Earlier, the GUIGenerator XML vocabulary was described using a Document
Type Definition that clearly identified elements and functions. However, the validation con-
ducted through JDOM references an XML Schema, or a model document defining the XML
structure. The schema approach emerged over the DTD approach for three reasons:

User Defined Data Types - Schema provide the ability to define custom data types
enhancing the flexibility of XML. For example, the alignment property permits only one
of eight values (North, South, West, East...). XML schema implement this requirement
by creating an enumeration type permitting one and only one of the eight possible values.

Reusable Groups - XML often presents itself through nested groups of data. Con-
sider the technique of defining properties. Indication of properties to follow occurs
through the properties element, followed by at most nine distinct elements, children of
Properties. Each possible child of Properties may be grouped, and reused through a
single definition of the group.

Uniformity - DTDs are written in Standard Generalized Markup Language (SGML) [2],
but XML schema are written in XML. Furthermore, validation using DTDs in JDOM
requires an extra line of XML in the input file referencing the DTD.

Although the XML language defined by GUIGenerator could have easily been represented
through the complete DTD given in Appendix A, but the complete XML schema, given in Ap-
pendix B, provides extra enhancements DTDs lacked.

6 Java Graphical Output

Output “Look and Feel”

There are nine tags and two attributes in the GUIGenerator vocabulary that control the appear-
ance of the GUI output for a particular Section. First, the two attributes of the Section ele-
ment, name attribute and layout attribute provide the foundation to a Section. The layout at-
tribute, as implied, controls the layout of a given Section, but may only hold one of three val-
ues: “Vertical”, “Horizontal” or “Matrix”.

16

The Vertical layout places all GUI components in a panel linearly in a single column.

The Horizontal layout, the default layout for a Section, places GUI components linearly in a
single row.

The Matrix layout attempts to construct a panel by arranging components in a configuration that
best resembles a square. Computing the square root of the number of components, and finding
the next largest whole number when the square root contains decimal yields the number of col-
umns. Once the number of columns is determined, taking the number of components and divid-
ing by the number of columns yields the number of rows in a matrix layout.

The name attribute of the section element, although optional, controls the title of the border sur-
rounding the section. In cases where the border exists, but no section name is specified, the
titled border simply becomes a standard line border. A visual representation of section proper-
ties is provided in Figure 8.

The nine property tags are optional, but must appear in a uniform order, as indicated in Appendix
A.

Border - Takes a boolean value (true/false) and simply indicates whether a Section bor-
der is present.

Alignment - Indicates how child components in a section are to be arranged. The align-
ments are implemented as nautical directions for simplicity. For example, a “North
alignment will attempt to arrange components toward the top, while a “West” alignment
will attempt to arrange components to the left. Furthermore, combination directions such
as “Northwest” will attempt to push components toward the top left comer.

HGap - Determines the number of pixels between components arranged horizontally.

VGap - Determines the number of pixels between components arranged vertically.

spacing - Determines the number of pixels to place at the perimeter of the section.
When a border is present, the extra spacing is placed outside of the perimeter compo-
nents, but inside of the border.

Westrnset, EastInset, NorthInset, southrnset - Overrides the spacing property
for a given perimeter. For example, the Westrnset element specifies the number of pix-
els components must be separated from the left edge of a section.

Core Java Reflection

The representation of Java objects as well-formed XML elements relies heavily on the ability to
translate text into objects at runtime, known as reflection. The Core Reflection API [I11 distrib-
uted by Sun Microsystems Java 2 Platform Standard Edition [101 describes two application cate-

17

gories that utilize reflection. The first set includes applications requiring access to all members
of a particular class utilized primarily in sophisticated applications such as interpreters or class
browsers. The second set includes applications requiring access to the entire set of public mem-
bers in a reflected run-time class, the category GUIGenerator employs [l 11.

The reflection algorithms required by GUIGenerator are primarily used to harvest objects from
the fnfero Business Layer, eliminating the need to interact with GUI components through the
front end XML file. The XML file itself only defines the PrimitiveModuleS to display, but At-
tributes within respective PrimitiveModuleS are processed by GUIGenerator. The determina-
tion of the specific GUI component to display resides in the AttributeType. Currently, the f n -
tero architecture supports 13 AttributeTypeS, reflecting standard data types such as string, vec-
tor and URL. In addition, fntero provides the capability of encapsulating multiple values in an
Attribute. One example of multiple encapsulations is the HASHTABLE-ENUM Attrib-
uteType, which maps together an integer value with a string key in order to mimic enumeration
types not available in Java. Enter0 internal mechanisms utilize the integer values, but GUI com-
ponents display string keys. The majority of the 13 AttributeTypeS are associated with a corre-
sponding WizardComponent. The Enter0 wizardcomponents each implement an interface,
clearly designating a uniform method of generating a Java component with Attribute values,
while maintaining a consistent appearance. Given standard wizardcomponents, GUIGenerator
only needed to determine the AttributeType and determine the proper component to handle the
AttributeType.

In order to determine the specific PrimitiveModule from a given system, three parameters must
be predetermined from input XML: Module name, Module type and Module value. First, the
specific ModuleType associated with the PrimitiveModule must be ascertained, which is used
to locate PrimitiveModuleS of that type. Using the Module type as the reflected class name and
Module value as the constructor parameter, invokes the getconstructor () and newInstance 0

18

methods to return a run-time specific instance Of ModuleType. Using this reflected instance of
ModuleType, the getModulesRecursively(ModuleType, level) is invoked On the Composite-
Module passed into the GUIGenerator. Because CompositeModuleS contain both Primitive-
Modules and other CompositeModuleS, a PrimitiveModule of the reflected ModuleType may be
nested many levels deep, requiring a recursive algorithm to find it. Once the ModuleType has
been determined, the Module name is used to pinpoint the PrimitiveModule from the multitude
possibly returned by the getModulesRecursively method, since many PrimitiveModuleS of a
particular ModuleType may exist. Each Attribute in the PrimitiveModule is then compared
with the binary expression tree, and if not filtered out, is mapped to the proper WizardCompo-
nent.

A second use of Reflection is for generating fixed components defined by the Field element. In
order to make the Field element most effective, the getFixedField () method uses the textual
name from the Type element in the XML and attempts to reflect the corresponding component
from the entero .gui .utils package. In addition, XML elements such as Label and value are
used as constructor parameters for creating instances of GUI components. For example, the
EButton, a commonly used fixed field, uses the data from the Label element for a constructor
parameter to generate a button displaying the corresponding text. When the element cannot be
matched with a commonly used element, Reflection is used to initialize components with an
empty parameter list.

Application of Properties

The initial phase of generating GUI output for a particular section begins by harvesting visual
properties from the input XML document, applying the properties after all specified system
components have been located. The properties, residing in a hashtable, are sent to the addCom-
ponents () method, which constructs a JPanel using the hashed properties before the addition of
system components. First, determination of the panel layout is followed by appropriately spac-
ing the panel. The spacing between components along the perimeter and the edge of the panel
and spacing between components is determined by accessing the spacing property in the proper-
ties hashtable, but a five pixels default is used when the spacing property is absent. In addition,
the computed edge spacing is overridden when specification of a particular perimeter is present
in the XML. The GUIGenerator utilizes GridBagConstraints [8], an object that applies output
properties, to assist in controlling the GridBag layout manager [8], specifically manipulating the
insets variable that controls spacing around individual components. The GridBag layout man-
ager provides the unique ability to alter the properties of individual components in context of
placement. Other layout managers in Java’s Standard Development Kit [lo] allow addition of
components to a container controlled by preset values.

Transformed system components in the form of GUI components are iteratively placed in the
output panel. The GridBag layout manager, required to control the position of components, Util-
izes a conceptual grid that requires both horizontal (x) and vertical (y) coordinates. The compu-
tation of the (x,y) position of a component requires only the number of rows. The x-coordinate
is computed by dividing the element index in the linear vector by the number of rows. Similarly,
the y-coordinate is computed by the element index modulo the number of rows. In addition, dur-
ing each iteration, the GUIGenerator must verify whether a particular component resides on the

19

perimeter, where the external spacing may differ from internal vertical and horizontal gaps. The
method simply checks whether the x-coordinate and y-coordinate equal zero indicating the be-
ginning of a row or column, and the number of rows or columns equaling the maximum, indicat-
ing the end of a row or column. The panel border is the final property applied, where the stan-
dard Enter0 titled border is placed around the panel before returning to a parent Section.

Putting It All Together

Once location of the desired PrimitiveModule is completed, the processPM (PrimitiveMod-
ule) method determines the proper WizardComponent for an Attribute. For example, the
WizardComponent associated with real numbers is the WCRealNumberField. A Java vector, or
resizable array of components, collects each WizardComponent, and is returned to the section
processing algorithm where the appropriate properties are applied.

The GUIGenerator implements a combination of a BOX and JPanel container to represent sec-
tions, and arrange components in an aligned fashion. Neither combination alone sufficiently
suited the needs of the GUIGenerator because BOX components failed to support the flexible
GridBagLayout and JPanelS demonstrated poor nesting of Components. JPanelS, unlike Boxes
contain implied insets, or invisible border spacing components that misalign sections when
placed together. For example, consider the GUIGenerator XML in Figure 9 demonstrating dif-
ferent levels of nesting.

<!--Define Parent Section-->
<Section layout="Horizontal">
<!--Define Section 1 within the parent-->
<Section name="Left" layout="Vertical"r
<Module name="Builder Trajectory" type="GeometryPMType"

value="TrajectoryModule"/>
</Section>

<Section name="Right">
<!--Define Section 2 within the parent-->

<Section name="Right Bottom">
<Module name-"Nuclear Module - Secondary" type="PhysicsPMType"

value-"NuclearPhysicsModule"/>
</Section>

</Section>
</Section>

20

Figure 9. Conceptual diagram of multiple nesting with JPanels and the corresponding XML.
The example in Figure 9 will generate a GUI comprised of two sections horizontally separated
by a default spacing of five pixels. The shading represents the two respective Sections placed
in sequential order that will display the Attributes of two different PrimitiveModuleS in the
same system. The first Section named “Left” and containing the Trajectory Module contains
layering one level deep since no other sections are defined within the first section scope. Con-
versely, the second section contains layering two levels deep since one other section, the “Right
Bottom” Section exists within the “Right” section. The anomaly pertaining to JPanelS is the
components in the left Section will be placed starting at the left comer with no extraneous spac-
ing, but components placed in the right section, nested two levels deep, will be placed within
the implied insets of the inner nesting section, therefore misaligning the components. The prob-
lem becomes especially apparent when sections contain no spacing, placed directly next to one
another, and during the application of borders.

The solution to the alignment problem emerges through initially adding components and apply-
ing properties within the context of a JPanel, but placing the finished JPanel within a Box con-
tainer. The BOX container will maintain the layout of components placed in the JPanel, but
eliminate extraneous inset space when added by a parent container. Refemng back to Figure 9,
the right section containing three physics Attributes would overlap the nested section above
its parent, eliminating the extraneous space in black. Although a distinct section is nested
within the right Section, the visual output is not affected with a BOX implementation. The GUI
generating process is depicted in Appendix C.

7 Searching Mechanism for PrimitiveModules
An example GUI output from the XML in Figure 5 is shown in Figure 10. The PrimitiveMod-
ule contains four Attributes: “Upper Radius”, “Lower Radius”, “AS Tip to Top Distance” and
“Height”. The four Attributes are of type real number and translate into specialized real num-
ber text fields.

Figure 10. Example GUlGenerator output of a PrimitiveModule from XML in Figure 5.

Given the architecture of the Enter0 software, with emphasis on flexibility, the need existed to
reference specific pieces of data in a system. For example, suppose we received a Composite-
Module, obtained the indicated PrimitiveModule and concluded the only information that re-
quired user input were fields associated with radius. An Enter0 PrimitiveModule containing
four Attributes is shown in Figure 10. However, the fact that a user only requires two of the
Attributes to be displayed requires a method for filtering out the remaining two Attributes.

21

The PrimitiveModule referencing system emerged from a combination of sources. First, Inter-
net based search engines provide the capability of so-called advanced searches. Among the fea-
tures implemented within advanced searches, the ability to specify combinations with boolean
capability, mandatory inclusion of keywords, mandatory exclusion of keywords and field search-
ing, is implemented by the GUIGenerator.

Two additional requirements materialized. First, given the sophisticated framework of the Enter0
system, knowing the existence of specific attributes is difficult. Therefore, Enter0 developers
needed to specify fields without knowing the complete name of an Attribute. Desiring a famil-
iar mechanism, GUIGenerator allows referencing of properties based on syntactically correct
regular expressions [16]. However, adding this capability required adding a mechanism to dis-
tinguish between standard keywords and regular expressions. Forward slash characters ('/'), util-
ized in the pattern matching language of Per1 [15], are appended to the ends of regular expres-
sions to distinguish patterns from words.

The second requirement emerged because of the characteristics Of Attribute names. Attrib-
utes are often based on two or greater word permutations where white space in the context of
readability and white space in the context of phrases needed to be distinguished. Therefore, the
single quote character (') is a phrase delimiter in the referencing vocabulary. The GUIGenerator
treats any white space inside single quotes as part of a phrase, storing the entire phrase as data in
an ExpressionNode. Figure 11 lists the syntax for the searching mechanism.

Figure 11. Collected language syntax for generating
search expressions.

Evaluating boolean expressions requires a mechanism more sophisticated than evaluating a
string of tokens from left to right. The implementation of mandatory inclusion/exclusion and
parenthesis alter the order of expression evaluation. Therefore, the binary tree data structure [19]
was implemented in order to represent boolean expressions as a set of sub-expression. Binary
trees are a collection of objects, often referred to as nodes, which contain data and pointers to
two or fewer nodes in memory.

When constructing binary trees in Java, the two possible pointers are not pointers in the tradi-
tional sense, but are reference variables to other nodes in memory. One reference or child of a
particular node represents a sub-expression, the root node itself represents a boolean operator and
the second child node represents the second sub-expression. For example, consider the expres-
sion (A 1 B) *. (c I D) and corresponding tree representation in Figure 12.

22

Figure 12. Conceptual view of a simple binary tree. The root node is the A operator, where the
tree contains two sub-trees to the left and right of the root respectively.

Simply evaluating the expression from left to right fails due to the altering of evaluation order by
parentheses. However, i n the binary tree structure, the expression (A I B) is considered one
sub-expression, while the expression (c I D) is considered another sub-expression with the *
operator serving as the root node. This expression contains a tree that is obvious to identify be-
cause of the division into three parts. Each sub-expression also represents a tree itself. For ex-
ample, the expression A I B contains an operator root node and two children, A and B. Simi-
larly, the expression c I D can be represented in a similar manner.

Parsing Expressions

Recall from Section 4 that boolean expressions evaluated by the GUIGenerator originate from
the XML attributes embedded within the Attributeset elements. For each respective Attrib-
uteset element, a so-called expression tree described in the preceding section represents key-
words, patterns and operators. This expression parsing procedure frequently occurs in compiler
theory, but GUIGenerator utilizes a simplified version because expressions are evaluated based
on boolean values. Within each Attributeset element, the XML attributes name and type may
both appear where individual Enter0 Attributes require matches by both name and type in or-
der to appear in output. Within the context of the expression tree, the expressions specified by
the name and type attributes are parsed separately, and are later evaluated together through inclu-
sive or.

Parsing by GUIGenerator is delegated to the PatternMatch class, responsible for the construc-
tion of binary trees, and the Enter0 attribute matching mechanism. Individual nodes in the binary
tree are instances of the ExpressionNode class, which encapsulates data, reference variables to
two other nodes, a boolean value indicating whether the data corresponds to an Attribute name
or type and a second boolean value indicating enabled state of an Attribute should a match be
found.

23

Expressions specified by the name and type attribute are dissected into character groups called
lexemes. The StringTokenizer class in the java.uti1 package performs this function easily,
generating a buffer of lexemes that is processed iteratively. During each iteration, the parsing
maintains a certain transition state [181, or the relation of the processed lexemes to the predefined
syntax. For example, in the GUIGenerator syntax, the processing of a forward slash character
(“i”) indicates the next n characters are in the context of a regular expression, where the parser
would collect all characters between slashes. This process of collecting characters within the
context of a regular expression would be considered a state. The importance of determining the
current state adheres to the fact that tokens in different contexts require different handling. For
example, the white space character inside a single quoted phrase must be included in the data,
but white space between two unquoted words is a delimiter.

Parsing States

The parsing algorithm utilized by the Pattermatch class is recursive. However, as mentioned
in the previous section, the handling of individual lexemes is accomplished through an iterative
loop. Recursion is implemented by the GUIGenerator parser through Java’s first in, last out
(FILO) Stack data structure.

The rules for a simple keyword or operator indicate constructing a new ExpressionNode with
the current lexeme as data, with no left or right child, and placing the new ExpressionNode on
the stack.

Regular expressions collect every character within a pair of forward slashes. The parsing algo-
rithm raises the regular expression boolean flag when the first forward slash occurs, where lex-
ernes from the StringTokenizer are gathered until a second forward slash is encountered.
Similarly, encountering a single quote raises the phrase boolean flag, which indicates collection
of lexemes until a second single quote is encountered. When the regular expression or phrase is
terminated, a new ExpressionNode is initialized with the phrase or regular expression as data.
White space not collected by a regular expression or phrase is simply ignored.

Parentheses provide the flexibility of determining evaluation order, but create an additional pars-
ing complexity. Any expression inside a set of parentheses indicates a sub-expression that holds
higher evaluation precedence. When the parsing algorithm encounters a left parenthesis, a new
ExpressionNode with the parenthesis as data is constructed and placed on the stack, serving as
a marker for the beginning of a sub-expression. Encountering a right parenthesis results in the
algorithm to be discussed in the following section.

Constructing the Binary Tree

The arrangement of ExpressionNode’S right and left children occurs only when an expression is
terminated. When the parsing algorithm reaches the end of a sub-expression (encountering a
right parenthesis) or the end of the entire expression (when all lexemes have been processed),
ExpressionNodeS are popped off the stack in sets of three. The second popped node provides
the root, while the first and third node serve as the right and left children of the root. The root

node is subsequently placed back on the stack, where the process is repeated until one Expres-
sionNode remains, the root node maintained by the PatternMatch class.

Complete Binary Tree Example

This example demonstrates the process of parsing an expression currently used by the GUIGen-
erator.

(Lower .* Radius * Radiation) I (/T.*/ .* ‘Net List’)

Without analyzing the syntax of the expression, a particular Enter0 Attribute must contain the
word combination “lower”, “radius” and “radiation” or must contain the combination of a name
starting with the letter T and containing the string “Net List”, all lexemes being case insensitive.
Furthermore, the expressions inside parentheses are treated as individual expressions as will be
demonstrated.

Tokenizing the expressions into lexemes will yield the following buffer:

White space characters, except for the space between the words “Net” and “List” are not in-
cluded because they are simply ignored by the algorithm. The algorithm will place Expres-
sionNodes onto the stack unless the lexeme is a regular expression, phrase or right parenthesis.
None of these conditions is satisfied until the seventh lexeme, or the right parenthesis. There-
fore, the stack and lexeme buffer will contain the following elements:

H Radiation

The right parenthesis provides the indication that the end of the expression has been reached, and
to construct a binary tree accordingly. The algorithm specifies popping nodes in sets of three,
connecting the second popped node with the first popped node as the right child and the third
popped as the left child as demonstrated with the binary tree in Figure 13.

25

Radiation

Figure 13. Binary tree generated based on the sub-expression (Radius Radiation).

The root node, in this case with the data as the A operator, i s placed back onto the stack with the
following state.

The same popping mechanism is used again, yielding a new tree containing the first sub-tree and
the string data ‘‘lower.’’ The root node is again placed on the stack.

Figure 14. Binary tree generated based on the sub-expression (Lower Radius Radiation).

The subsequent iteration will terminate this process since the right parenthesis is located and re-
moved off the stack. The only node that will remain is the root * in Figure 14.

The next irregular condition is the regular expression /T. */ that matches an Attribute begin-
ning with the letter T. The fact that the lexeme begins with the / character automatically forces

26

the algorithm to check whether the last character is /. Because this is the case, the entire lexeme
is placed on the stack and treated as a standard keyword. However, if the terminating / were ab-
sent, all lexemes would be concatenated to the regular expression until the terminating / was
found. One of the proceeding lexemes will demonstrate this idea.

The lexeme 'Net indicates the beginning of a multiword phrase. Since the terminating single
quote is absent, the parseExpression () method will continue to concatenate lexemes until the
terminating single quote is located. Therefore, the phrase 'Net List' including the white space
character is placed on the stack. Finally, the terminating right parenthesis will cause tree con-
struction similar to the first sub-expression. The stack will contain three nodes after the con-
struction of the second sub-expression.

where "2 is the root of the second sub-tree containing the phrase and regular expression, and "1 is
the root of the expression in Figure 14. Figure 15 demonstrates the appearance of the final bi-
nary tree.

n < & IT.*/ 'Net List'

Radius I I Radiation

Figure 15. Full binary tree generated based on the expression (Lower A Radius Radiation) A

(fr.*/ A 'Net List').

27

Evaluating the Binary Expression Tree

Once the binary tree is constructed, all that is needed is a reference to the root node of the tree.
With the root node containing reference variables to two other nodes, and each of these nodes
contains references two nodes, evaluation of the tree is done using a recursive in-order binary
tree traversal algorithm. First, the truth of each respective side of the binary tree is determined,
but when either side contains null data, evaluation defaults to a true evaluation. The recursive
isMatch () method in the PatternMatch class traverses until the leaves of the tree are reached
where the first boolean evaluation begins. The conclusion of each evaluation results in returning
a true of false response, until the truth at the root level is ascertained. The GUIGenerator then
determines the presence of a particular attribute in a GUI based upon the criteria established by
the Attributeset tag.

Rightmost Matching

The supported searching vocabulary leaves room for ambiguity as definitions within the At trib-
uteset element in the XML may collide. For example, one possible collision is demonstrated
by the XML below

<Attributeset name="Net" enabled="false"/>
cAttributeSet name="List" enabled="true"/>

An Attribute with the name "Net List" forces the interpreter to decide which definition to en-
force, since both "Net" and "List" satisfy the matching conditions.

The determination was made to enforce a rule to evaluate XML definitions with increased prece-
dence to elements listed below others. In the preceding example, the second listed element would
be enforced, enabling the GUI component related to "Net List".

In terms of the expression tree, elements that are parsed before others are placed to the left of
elements parsed later. Recalling the execution of the parsing algorithm, data is placed within
ExpreasionNodeS, which are maintained on a Stack, where elements encountered first are added
to the tree last. In addition, ExpressionNodes are removed from the Stack and placed onto the
tree in sets of three nodes, using the first node as the right child, the second node as the root and
the final node as the left child. In order to enforce the latest appearing rule match, the data of the
corresponding rightmost ExpressionNode is applied.

8 Complete Example
This example demonstrates the entire process of parsing an XML file, reflecting Java objects and
applying the searching mechanism in generating GUI output. Consider the following XML

<GUIGenerator>
el-Root Section element-->
<Section name="Start" layout-"Horizontal">

<Properties>

</Properties>

<Section name="Geometry" layout="Vertical">

<Border>true</Border>

<Module name="AFF Geometry OD" type="GeometryPMType"

<Attributeset name='Radiation"/>
<Attributeset name="'Radius'" type="scalarreal" enabled="true"/>

value="GeometryModule">

</Module>
<Field name="SButton" enabled="true">
<Type>EButton</Type>
cLabel>Submit</Label>

</Section>
</Field>

<Section name="Components" layout="Vertical">
<Properties>
<Border>true</Border>
<Alignment>Westc/Alignment>
<HGap>lO</HGap>
<VGap>S</VGap>
<Spacing>lO</Spacing>
<SouthInset>30</SouthInset>
</Properties>
<Module name="Entero OD Lumped Thermal Code"

value="Entero Lumped Thermal Code"/>
</Section>

c/GUIGenerator>
</Section>

type="ApplicationPMType"

The XML is parsed and stored into a tree data structure in the Document class where the root of
the XML tree, the GUIGenerator element, can be accessed through the getRootElement 0
method. With access to the GUIGenerator root element, the parent section element can be ac-
cessed by invoking the getchildren () method in the Element class. The recursive process of
Sections begins with this parent Section element, done through the processsection ()

method. The child elements of the parent section element are harvested in a list data structure.
Therefore, invoking the getchildren 0 method on the parent element <Section
name="Start" layout="Horizontal"> results in a list with the following elements:

<Properties>
<Section name="Geometry" layout="Vertical">
<Section name="Components" layout="vertical">

Figure 16. List contents after collecting the child ele-
ments of Section Start.

The parent Section element will contain two other Sections within it. Once the elements are
collected in a list, an iterator checks the name of the element (Properties, Module, Field, Sec-
tion). In this case, a Properties element and two Section elements are found, which require a
recursive call to the processsection 0 method.

First, the children of the Properties element are collected and maintained in a hashtable to be
used when placing components. An iterator traverses the resulting child elements and uses ele-

29

ment names as keys and element data as values in the hashtable. In this case, only the Border
property is specified, which will create a border around the entire GUI with the title "Start" from
the section name attribute.

Next, the children of element <Section name="Geometry" layout="Vertical"> are collected
in the same way as the parent Section element. This results in a list with the contents in Figure
17.

<Module name="AFF Geometry OD" type="GeometryPMType" value="GeornetryModule">
<Field name="SButton" enabled="true">

Figure 17. List contents after collecting the child elements of Section S1.

The Module element is reflected by the getModule () method, which returns a PrimitiveMod-
ule object that contains four Attributes.

PrimitiveModule: Geometry OD, Type: GeometryPMType

AS Tip to Top Distance Real Number
Height Real Number
Lower Radius Real Number
Upper Radius Real Number

Attribute Name Attribute Type

Figure 18. Attribute description of PrimitiveModule Geometry OD.

The child elements of the Module are collected and processed into a binary boolean expression
tree. Each Attribute is then compared to this tree to determine if it appears in the GUI and if it
should be enabled. In this case, the Attributeset elements specify that Attributes must con-
tain the word "Radiation" or contain the word "Radius" while being of real number type. The
Geometry OD PrimitiveModule would then have two Attributes, "Lower Radius" and "Upper
Radius" matching. If an Attribute is determined to match, it is mapped to a corresponding
Wizardcomponent, enabled according to the corresponding XML attribute and placed in a vector
with other elements collected from the current call of processsection 0 .

The second element in Figure 17 is the Field element, which is processed by collecting its chil-
dren. The data from the *e element is used for reflecting the corresponding component in the
entero.gui .utils package. In the case of an EButton, the data from the Label element is
used to set the displayed text. The EButton is placed in the same vector of components as the
previous Attributes from the PrimitiveModule in Figure 18. After processing the elements in
Figure 17, the collection vector contains the GUI components in Figure 19.

Figure 19. Vector contents after collecting the GUI components from Section S1.

The components are then added to a JPanel, and applied to a set of default properties since the
Properties element fails to appear within the Section. The constructed JPanel is placed in a
BOX container to maintain alignment as described in Section 6. The GUJ output is in Figure 20.

Figure 20. GUI output for Section Geometry.

The constructed GUI section is then returned to the parent section, and is handled as a compo-
nent as it is placed in a vector with other generated components from elements in Figure 19.

Returning to Figure 16, the completion of processing for Section Geometry leads to the
processing of the section named "Components". The children of Section Components are har-
vested resulting in a list with the contents in Figure 21.

<Properties>
<Module name="Entero OD Lumued Thermal Code" tme="AuDlicationPMTme"

Figure 21. List contents after collecting the child elements of Section Components.

First, the child elements of the Properties element are processed and stored using the same
process described previously. The following Module element is processed in the same way as
the Module element in Figure 17. The corresponding GUI output for Section Components is in
Figure 22 with the user defined properties applied.

Figure 22. GUI output for Section Components.

This GUI section is also returned as a component to the parent Section, which now contains the
Box container in Figure 20 and the Box container in Figure 22. Because the processing of ele-
ments from Figure 16 has concluded, the two components associated with the parent Section
are put together to form the final GUI product in Figure 23.

1
Figure 23. Final GUI output for Section.

\

9 Summary
The GUIGenerator Project promotes the dynamic features of the thriving technologies of XML
and Java. Furthermore, it parallels the flexible architecture of the Enter0 software, making al-
ready dynamic system data mutable through the front-end graphical user interfaces. The
GUIGenerator parses a well-formed XML document and accesses parsed information for gener-
ating graphical components when required.

The ideas and specification of the GUIGenerator required the ability to generate graphical output
dynamically. In order to model the diverse systems integrated by the Enter0 software, the
GUIGenerator needed to adapt to any current or future system in the software architecture. Fur-
thermore, front-end GUIs are not limited to a limited set of appearances, since output GUIs are
adaptable even at runtime without the overhead of recompilation. Finally, the idea of flexibility
extends down to individual system properties, as users may reference Module Attributes
through the GUIGenerator search mechanism. A GUI created by the GUIGenerator within the
Enter0 software is depicted in Appendix D.

Although GUIGenerator meets its requirements, its flexibility and ease of use can be enhanced.
For example, the searching mechanism can be extended to search for Modules, a feature cur-
rently being added. Other enhancements include providing some common templates for GUI

GUI.
appearance and providing greater user control over the appearance of sections of the generated

The GUIGenerator will be used to generate the user interfaces for the Enter0 code coupling of the
NuGET neutron environment code to the XyceTM parallel circuit code to support an ASCI Hos-
tile Environments Level 2 milestone in 2003.

33

References
The Apache XML Project, available at bttp://xd.apache.org/index,html.

Ltd., Birmingham, UK 2001.
K. Cagle, C. Dix, D. Hunter, R. Kovack, J. Pinnock and J. Rafter. Beginning XML, 2“ Editon. Wrox Press

J. P. Castro, P. N. Demmie, D. R. Gardner, M. A. Gonzales, G. L. Hennigan, M. F. Young, “The Enter0
Software Architecture: Reflecting the Way Engineers Think About Systems”, Proceedings of the Summer

Extensible Markup Language, available at http://www.w3.org/XML.
Computer Simulation Conference 2002 (July 14-18, 2002, San Diego, CA).

ForteM for JavarM available at bttp://wwws.sun.comlsoftware/sundev/jde/index.html,

ject: Developing a Multifidelity System Environment for Design Engineers”, Proceedings of the Summer
D. R. Gardner, J. P. Castro, P. N. Demmie, M. A. Gonzales, G. L. Hennigan, M. F. Young, “The Enter0 Pro-

Computer Simulation Conference 2002 (July 14-18,2002, San Diego, CA).
D. R. Gardner, J. P. Castro, P. N. Demmie, M. A. Gonzales, G. L. Hennigan, M. F. Young, S. S . Dosanjh,
“Developing a Flexible System-Modeling Environment for Engineers”, Proceedings of the Hawaii Interna-

C.S. Horstmann and G. Cornell. Core Java 2, Volume l-Fundamentals. Sun Microsystems Press, Palo Alto,
tional Conference on Systems Sciences (HICSS35) (January 7-10,2002, Big Island, HI).

CA 1999.
Hyper Text Markup Language (HTML), available at http://www.w3.org/MarkUp/.
JavaTM 2 Platform, Standard Edition (J2SETM), available at http://java.sun.comJ2se/.
Java Core Reflection, available at http://java.sun.comlj2se/l.3/docs/guide/reflection/spec/
javareflection.doc.htm1
JSX, available at http://www.csse.monash.edu.au/bren.JSX.

MAUI, available at http://csmr.ca.sandia.gov/projects/maui/.
B. McLaughlin. Java andXML. O’Reilly & Associates, Inc., Sebastopol, CA 2000.

Perl, available at http://www.perl.org/.
Regular Expressions, available at http://www.opengroup.org/onlinepubs/OO7908799/xb~re,html.

R. W. Sebesta. Concepts of Programming Languages Fifth Edition. Addison Wesley, Boston, MA 2002.
SAX, available at http://www.saxproject.org.

M. A. Weiss. Data Structures and Problem Solving Using Java. Addison Wesley Longman, Inc., Reading,
MA 1998.

e

http://www.w3.org/XML
http://www.w3.org/MarkUp
http://java.sun.comJ2se
http://java.sun.comlj2se/l.3/docs/guide/reflection/spec
http://www.csse.monash.edu.au/bren.JSX
http://csmr.ca.sandia.gov/projects/maui
http://www.perl.org
http://www.saxproject.org

Appendix A - Document Type Definition (DTD) of GUIGenerator XML

<!ELEMENT GUIGenerator (Section),

<!--One section tag must be the child of the GUIGenerator tag-->
<!--Implements a pseudo-recursive approach, a section may contain a set-->
<!--of properties, an infinite number of modules and an infinite number-->
<!--of sections, nested within a parent section-->
<!ELEMENT Section (Properties, (Module I Section I Field)+)>
<!ATTLIST Section name CDATA #IMPLIED layout (Vertical I Horizontal I Matrix)
<!ELEMENT Properties (Border?, Alignment?, HGap?, VGap?, Spacing?, WestInset?
#REQUIRED>

EastInset?, NorthInset?, SouthInset?)>

<!--Define the possible property tags-->
e !ELEMENT Border (#PCDATA) >
<!ELEMENT Alignment (#PCDATA)>
<!ELEMENT HGap (#PCDATA) >
< !ELEMENT VGap (#PCDATA) >
<!ELEMENT Spacing (#PCDATA)>
<!ELEMENT WestInset (#PCDATA) >
<!ELEMENT EastInset (#PCDATA)
e !ELEMENT NorthInset (#PCDATA) >
e !ELEMENT SouthInset (#PCDATA) >

<!--Define necessary attributes of a module-->
<!ELEMENT Module (Attributeset*)>
c!ATTLIST Module name CDATA #REQUIRED type CDATA #REQUIRED value CDATA #RE-
QUIRED>
<!ELEMENT Attributeset EMPTY>
<!ATTLIST AttributeSet name CDATA #IMPLIED type CDATA #IMPLIED>

<!--Define Field tag-->
<!ELEMENT Field (Type?, Label?, Value?, Unit?, Size?),
<!ATTLIST Field name CDATA #REQUIRED layout (Horizontal I Vertical) #IMPLIED
<!ELEMENT Type (#PCDATA)>
<!ELEMENT Label (#PCDATA)>
< !ELEMENT Value (#PCDATA) >
< !ELEMENT Unit (#PCDATA) >
<!ELEMENT Size (#PCDATA)>

enabled (true I false) #IMPLIED>

35

Appendix B - X M L Schema for GUlGenerator XML

<?xml version="l.O"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
cxs:element name="GUIGenerator">
cxs:complexTypes
cxs:sequence>
<!--Allow only one section root-->
cxs:element ref="sectionO maxOccurs="l"/>
c!--GUIGenerator tags-->

c/xs:complexType>
</xs:sequence>

c/xs:element>

<!--Element 1: Section Tag-->
cxs:element name="Section">
<xs:complexType>
cxs:sequence>
cxs: element ref ="Properties" minOccurs="O" maxoccurs-
cxs:choice minOccurs="O" maxOccurs="unbounded">
cxs:element ref="Module"/>
cxs:element ref="Modules'/>
cxs :element ref="Section"/>
cxs:element ref="Field"/>
c/xs:choice>
c/xs:sequence>
<xs:attributeGroup ref="SectionAttGroup"/>
c/xs:complexType>
</xs:element>

<!--Element 2: Properties Tag-->
cxs:element name="Properties">
<xs:complexType>

c/xs:cornplexType>
cxs:group ref="PropertiesGroup"/>

c/xs:elernent>

<!--Element 3 : Modules inside parent-->
cxs:elernent name="Module">
cxs:complexType>
<xs:sequence>
cxs:elernent name="AttributeSet" minOccurs="O" maxOccurs="unbounded">
cxs:cornplexType>
<xs:attribute name="name" type="xs:string" use="optionaln/>
cxs:attribute name="type" type="xs:string" use="optional"/>
cxs:attribute name="enabled" type="xs:boolean" use="optionaln/>
c/xs:complexType>
c/xs:element>

c/xs:sequence>
<!--Attributes for the module tag-->
cxs:attribute name="name" type="xs:string" use="required"/>
cxs:attribute name="type" type="xs:string" use="required"/>
cxs:attribute name="value" type="xs:string" use="required"/:
</xs:complexType>
c/xs:element>
e ! - - Element.. Module's inside parent - - >
<xs:element name="Modules">

cxs:complexType>
<xs:sequences
<xs:element name="AttributeSet" minOccurs="O" maxOccurs="unbounded">
<xs:complexType>
cxs:attribute name="name" type="xs: string" use="optional''/>
cxs:attribute name="type" type="xs:string" use="optional"/>
<xs:attribute name="enabled" type="xs:boolean" use="optional"/>
</xs:complexType>
c/xs:element>

<!--Attributes for the Modules tag-->
</xs:sequence>

<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="type" type="xs:string" use="required"/>
<xs:attribute name="value" type="xs:string" use="required"/>

</xs:element>

<!--Element 4: Fixed Fields-->
<xs:element name=RField">

c/xs:complexType>

<xs:complexType>
cxs:group ref="FieldProperties"/>

<xs:attribute name="layout" type="xs:string" use="optional"/>
<xs:attribute name="name" type="xs:string" use="required"/>

<xs:attribute name="enabled" type="xs:string" use="optional"/-

</xs:element>
c/xs:complexType>

<!--Group of section attributes-->
<xs:attributeGroup name="SectionAttGroup">
<xs:attribute name="name" type="xs:string" use="optional"/>
<xs:attribute name="layout" default="Vertical">
<xs:simpleTypes
<xs:restriction base="xs:string">
cxs:enumeration value="vertical"/>
cxs:enumeration value="Horizontal"/>
ex8 :enumeration value='Matrix"/>

</xs:simpleTypes

</xs:attributeGroup>

</xs:restriction>

c/xs:attribute>

<!--Group of properties-->
<xs:group name="PropertiesGroup">
<xs:sequence>
cxs:element name="Border" type="xs:boolean" default="false" minOccurs="O"

<xs:element name="Alignment" default="Center" minOccurs="O" maxOccurs="l">
maxOccurs="l"/>

cxs:simpleType>
<xs:restriction base="xs:string">
<xs :enumeration value="west"/>
<xs:enumeration value="East"/>
<xs:enumeration value="North"/>
cxs:enumeration value=nsouth"/>
<xs:enumeration value="Northwest"/>
cxs:enumeration value='Northeast"/>
<xs:enumeration value="Southeast"/>
cxs:enumeration value="Southwest"/z
<xs:enumeration value="Center"/>
</xs:restriction>

37

</xs:elementz
<xs:element name="HGap" type="xs:integer" default="5" minOccurs="O"

</xs:simpleType>

maxoccurs="l"i;
-

<xs:element name="VGap" type="xs:integer" default="5" minOccurs="O"
maxOccurs='l"/>

maxoccurs="l"/>

maxOccurs='l"/>

maxoccurs="l"/>

maxOccurs="l"/>

maxOccurs="l"/>

<xs:element name="Spacing" type="xs:integer" default="lO" minOccurs="O"

<xs:element name="westInset" type="xs:integer" minOccurs="O"

<xs:element name="EastInset" type="xs:integer" minOccurs="O"

<xs:element name="NorthInset" type="xs:integer" minOccurs="O"

<xs:element name="SouthInset" type="xs: integer" minOccurs="O"

c/xs:groupz
</xs:sequence>

<!--Group of Fixed Field Elements-->
<xs:qroup name="FieldProperties'> - .
<xs:sequence>
cxs:element name="Tvoe" twe="xs:strins" minOccurs="l" maxOccurs="l"/>
<xs:element name="Label" type="xs:string" minOccurs="l" maxOccurs="l"/>
<xs:element name="Value" type="xs:string" minoccurs="~" maxoccurs="l"/>
<xs:element name="Unit" type="xs:string" minOccurs="o" maxOccurs="l"/s
<xs:element name="Size" type="xs:integer" minOccurs="o" maxOccurs="l"/>

._ _ _ -

</xs:sequence>
</xs:group>

</xs:schema>

A

i! a

u
)

0

E 0

b

L

3

a I X

n

.
I

-

t

E a Q

h

DISTRIBUTION:

IO Edwin S. Wong
Texas Christian University
P.O. Box 292238
Fort Worth, TX 76129

1 MS 0321
1 0316
1 0819
1 0820
1 0820
1 0820
1 0316
8 0316
IO 0316
1 03 I6
1 03 16
1 0316
1 0739
5 1137
1 1 I46
1 1179

W. J. Camp, 9200
P. Yarrington, 9230
E. A. Boucheron, 9231
P. F. Chavez, 9232
J. R. Weatherby, 9232
P. N. Demmie, 9232
S. S. Dosanjh, 9233
J. P. Castro, 9233
D. R. Gardner, 9233
G. L. Hennigan, 9233
S. A. Hutchinson, 9233
J. B. Aidun, 9235
M. F. Young, 6415
M. A. Gonzales, 6535
P. J. Griffin, 6423
L. J. Lorence, 15341

2
1 MS 9018 Central Technical files, 8945-1

1
0899 Technical Library, 9616
0612 Review and Approval Desk, 9612

for DOE/OSTI

41

	Abstract
	Acknowledgments
	Contents
	1 Introduction
	Overview of the Enter0 Software Project
	Flexible Data Modeling with XML
	GUIGenerator Purpose and Overview
	Design Requirements

	2 Overview of the Enter0 Architecture
	Modules

	3 Flexible Data Modeling with XML
	XML Fundamentals

	4 Syntax and Semantics of GUIGenerator XML
	GUIGenerator Vocabulary Specification
	Defining Modules
	Attributeset Element
	Fixed Field Elements
	Section Elements Nested within Other Sections

	5 Event Driven XML Interpretation
	SAX - Simple API for XML
	XML Validation
	DTD or XML Schema

	6 Java Graphical Output
	Output “Look and Feel”
	Core Java Reflection
	Application of Properties
	Putting It All Together

	7 Searching Mechanism for PrimitiveModules
	Parsing Expressions
	Parsing States
	Constructing the Binary Tree
	Complete Binary Tree Example
	Evaluating the Binary Expression Tree
	Rightmost Matching

	8 Complete Example
	9 Summary
	References
	Appendix A - Document Type Definition (DTD) of GUIGenerator XML
	Appendix B - XML Schema for GUlGenerator XML
	DISTRIBUTION:

