Development of CaO coatings by thermal and chemical vapor deposition.

PDF Version Also Available for Download.

Description

We have developed CaO coatings that are applied by a thermal and chemical vapor deposition process. Several experiments were conducted to study how the deposition of Ca on a V-4Cr-4Ti substrate alloy is affected by variations in process temperature and time, specimen location, and surface preparation and pretreatment. Results showed that thick adherent coatings can be fabricated by thermal/chemical vapor deposition, especially if a double Ca treatment is applied. Extensive microstructural analysis of the coatings showed almost 100% CaO over a coating thickness of 20-30 {micro}m; electrical resistance (measured by the two-probe method) of the coatings was at least two ... continued below

Physical Description

14 pages

Creation Information

Natesan, K.; Uz, M. & Smith, D. L. April 26, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We have developed CaO coatings that are applied by a thermal and chemical vapor deposition process. Several experiments were conducted to study how the deposition of Ca on a V-4Cr-4Ti substrate alloy is affected by variations in process temperature and time, specimen location, and surface preparation and pretreatment. Results showed that thick adherent coatings can be fabricated by thermal/chemical vapor deposition, especially if a double Ca treatment is applied. Extensive microstructural analysis of the coatings showed almost 100% CaO over a coating thickness of 20-30 {micro}m; electrical resistance (measured by the two-probe method) of the coatings was at least two orders of magnitude higher than the minimum required for blanket application. The results obtained in this study indicate that CaO is a viable coating for V-Li advanced blankets, but that significant additional effort is needed, especially from the standpoint of structure/composition relationship to its electrical resistance and the coating stability in a flowing Li environment. Furthermore, resistance must be measured in situ in Li to simultaneously evaluate coating integrity, resistance, and Li compatibility.

Physical Description

14 pages

Source

  • 10th International Conference on Fusion Reactor Materials ICFRM-1, Baden-Baden (DE), 10/14/2001--10/19/2001

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/ET/CP-107502
  • Grant Number: W-31-109-ENG-38
  • Office of Scientific & Technical Information Report Number: 795022
  • Archival Resource Key: ark:/67531/metadc743111

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 26, 2002

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • March 29, 2016, 4:36 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Natesan, K.; Uz, M. & Smith, D. L. Development of CaO coatings by thermal and chemical vapor deposition., article, April 26, 2002; Illinois. (digital.library.unt.edu/ark:/67531/metadc743111/: accessed October 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.