Energetic Materials and Atomic Force Microscopy: Structure and Kinetics

PDF Version Also Available for Download.

Description

Understanding the structure and composition of energetic materials at the sub-micron level is imperative for the fundamental studies of hot-spot formation and structural composition of energetic materials. Using in situ high-temperature AFM we have observed the solid-solid phase transition of Octahydro-1,3,5,7,-tetrazocine, HMX, in real time. Massive surface reconstruction occurs during the 1st-order transition. The temperature induced increase in void space and surface roughness observed in the delta phase polymorph of HMX serve to increase the growth rate and volume of shock initiated hot spots and possibly reaction sensitivity. HMX exists in four solid phase polymorphs, labeled {alpha}, {beta}, {chi}, and ... continued below

Physical Description

5,490 Kilobytes pages

Creation Information

Weeks, B.L.; Weese, R.K. & Zaug, J.M. July 31, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Understanding the structure and composition of energetic materials at the sub-micron level is imperative for the fundamental studies of hot-spot formation and structural composition of energetic materials. Using in situ high-temperature AFM we have observed the solid-solid phase transition of Octahydro-1,3,5,7,-tetrazocine, HMX, in real time. Massive surface reconstruction occurs during the 1st-order transition. The temperature induced increase in void space and surface roughness observed in the delta phase polymorph of HMX serve to increase the growth rate and volume of shock initiated hot spots and possibly reaction sensitivity. HMX exists in four solid phase polymorphs, labeled {alpha}, {beta}, {chi}, and {delta}. The phase conversion of the {beta} phase to the {delta} phase involves a major disruption of the crystal lattice. The energy required to bring about this change is a measurable quantity. Multiple thermal analysis techniques carried out simultaneously are preferable because the results are directly comparable. Thermal methods are dynamic techniques, where heating or cooling is applied to a sample, unless isothermal conditions are employed. Thermogravimetic Analysis, TGA, can be used to quantify decomposition components in a substance while Differential Thermal Analysis, DTA, can be used to measure the heat flow or the specific heat capacity, with respect to time and temperature. The advantage of TGA/DTA analysis is that the measurement of weight loss and heat flow are taken simultaneously and the observed events are directly related with respect to time and temperature. TGA/DTA experiments were performed to help us take a different look at the chemical nature of HMX and aid us in understanding the void formation process.

Physical Description

5,490 Kilobytes pages

Source

  • 12th International Detonation Symposium, San Diego, CA (US), 08/11/2002--08/16/2002

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JC-145215
  • Grant Number: W-7405-Eng-48
  • Office of Scientific & Technical Information Report Number: 802849
  • Archival Resource Key: ark:/67531/metadc743042

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 31, 2002

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • May 6, 2016, 3:17 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Weeks, B.L.; Weese, R.K. & Zaug, J.M. Energetic Materials and Atomic Force Microscopy: Structure and Kinetics, article, July 31, 2002; California. (digital.library.unt.edu/ark:/67531/metadc743042/: accessed November 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.