MIDWEST SUPERCONDUCTIVITY CONSORTIUM

Final Progress Report

Consortium Member Universities

Purdue University
Ohio State University
University of Notre Dame
University of Missouri
University of Nebraska
Iowa State University

MISCON

DOE Patent Clearance Granted

October 2001

Submitted to the:

U. S. Department of Energy
Grant No. DE-FG02-90ER45427
DOE Report No. DOE/ER/45427-9

Arden L. Bement, Jr., Director
Purdue University
West Lafayette, IN 47907
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
MIDWEST SUPERCONDUCTIVITY CONSORTIUM

SPONSOR:
Division of Materials Sciences
Office of Basic Energy Sciences
United States Department of Energy

PARTICIPATING UNIVERSITIES:
Indiana University
Iowa State University
University of Missouri-Columbia
University of Nebraska
University of Notre Dame
The Ohio State University
Purdue University
PARTICIPATING AFFILIATES:

Advanced Technology Materials, Inc.
American Superconductor Corporation
AT&T Bell Labs
Bellcore
Conductus, Inc.
DuPont Superconductivity
HYPRES, Inc.
IBM Thomas J. Watson Research Center
Intermagnetics General Corporation
Jet Propulsion Laboratory
Keithley Instrument Company
Lake Shore Cryotronics, Inc.
Lucent Technologies
National Institute of Standards and Technology
Plastronics, Inc.
Quantum Magnetics/Quantum Design
Ribbon Technology Corporation
Superconductive Components, Inc.
TRW Superconductivity Research
Public Service Indiana
Weizmann Institute of Science
Wright Patterson AFB
<table>
<thead>
<tr>
<th></th>
<th>Table of Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Background & Summary</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Participating Universities</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Typical Projects</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>Appendix I - Achievements</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>Appendix II - Participants</td>
<td>29</td>
</tr>
<tr>
<td>6</td>
<td>Appendix III - Funding Awarded</td>
<td>47</td>
</tr>
<tr>
<td>7</td>
<td>Appendix IV - Students/Degrees</td>
<td>50</td>
</tr>
<tr>
<td>8</td>
<td>Appendix V - Publications/Presentations</td>
<td>53</td>
</tr>
<tr>
<td>9</td>
<td>Appendix VI - Summer Schools</td>
<td>56</td>
</tr>
<tr>
<td>10</td>
<td>Appendix VII - Organization</td>
<td>57</td>
</tr>
<tr>
<td>11</td>
<td>Appendix VIII - Industrial Affiliates</td>
<td>60</td>
</tr>
</tbody>
</table>
MISCON BACKGROUND

In April 1988, the Indiana Center for Innovative Superconductor Technology (ICIST), funded by the State of Indiana through the Corporation for Science and Technology (CST), was established. ICIST was a cooperative effort between Purdue University and the University of Notre Dame. The mission of ICIST was to promote the development and application of high critical temperature (T_c) superconducting materials for use by Indiana corporations and to generate long-term economic benefits for Indiana industry. The ICIST administrative office was located at Purdue while the research sites were located at both Purdue and Notre Dame. The research was an interdisciplinary effort, and investigators from the departments of engineering, physics, and chemistry at both universities were involved.

With many midwestern universities involved in superconductivity research, a consortium utilizing the physical facilities, personnel and talent from the best of those universities was a natural extension of ICIST. The plan was to use the structure that was already in place and then include the broader scope of the consortium.

The Midwest Superconductivity Consortium (MISCON) was created in 1989 when President George Bush signed the Energy and Water Development Appropriations Bill for fiscal 1990. Rep. John Myers, R-Ind., a member of the House Appropriations Committee at that time, sponsored the bill and supported the activities of the consortium.

MISCON MISSION

The basic mission of the Consortium was to advance the science and understanding of high-T_c superconductivity and to promote the development of new materials and improved processing technology. Focused group efforts were the key element of the research program. One program area is the understanding of the layered structures involved in candidate materials and the factors that control their formation, stability and relationship to superconductor properties. The other program area had a focus upon factors that limit or control the transport properties such as weak links, flux lattice behavior, and interfaces. Interactions among Consortium groups and with industrial affiliates were an integral part of the program.

RATIONALE

Countries around the world are working at a furious pace to develop patent positions and introduce new products based on high-temperature superconductivity. The primary
application markets include medical instrumentation, telecommunications, computers, sensors, electrical power generation and storage equipment, transportation systems and scientific instrumentation, among others. In addition to large companies, several small high-technology companies have been founded in the U.S. to bring these technologies to the marketplace. The Midwest is well represent by these startup firms. However, in spite of encouraging progress and because of the difficult challenges these unusual ceramic materials present, the commercial promise for major systems applications still lies in the future.

GOALS

- To develop, utilizing effective group efforts, the scientific and technological foundation for industrial applications and commercialization of high-temperature superconductivity;
- To facilitate the transfer of technology from the Consortium research laboratories into the industries of the Midwest; and
- To ensure that there is a continuing supply of engineers and scientists trained in this important field.

ORGANIZATION

The consortium is under the program management of Purdue University and involved the participation of the following universities: Indiana University, Iowa State University, University of Missouri-Columbia, University of Nebraska, The University of Notre Dame, The Ohio State University, and Purdue University. All projects undertaken through this collaboration were selected by a rigorous outside independent peer review by outstanding experts in the field.

APPROACH

The Consortium focused on multidisciplinary and multiuniversity collaborations through investigator exchanges, joint workshops and group meetings, joint publications, and the sharing of research instrumentation, techniques and research materials. These collaborative efforts greatly increased R&D productivity, synergy, scientific excellence and cost effectiveness. The Consortium actively pursued industry affiliation based on meaningful joint collaborative efforts to transfer technology (rather than membership fees). One of the principal means for strengthening the Midwest scientific, technological and industrial bases in this important technology was through the education of graduate
scientists and engineers with special expertise in the field. Nearly all former MISCON graduates are employed in industry, national laboratories and universities.

RESEARCH AND EDUCATION PROGRAM

The programmatic research concentrated upon two interrelated materials problem areas. The first area had a focus on the synthesis and processing of high-temperature superconducting materials. The second focused on understanding limiting features in the transport properties of these materials. Solutions to these problems are essential to industrial developments of components and systems using high-temperature superconductors and to the transport of very high electrical current densities over a range of magnetic fields required of these components and systems. This research was carried out primarily by graduate students under the supervision of leading scientists and engineers. Also involved were selected undergraduate students involved in a research experience.

INTERACTIONS

- An Industrial Affiliate Program promoted collaborations between member scientists and scientists at industrial and national labs. Membership required establishing a collaboration with a university consortium member and producing a joint program plan.
- A Program Augmentation grant was provided under active projects where specific joint technology transfer developments involving participating Affiliates on a cost sharing basis were formally agreed to by both parties.
- A seminar exchange promoted interaction within and between groups.
- A programmatic exchange promoted the use of special instrumentation or facility capabilities to all participants.
- A capital equipment competition addressed group needs (as the primary requirement) for capital equipment. Cost sharing was a key requirement.
- Group Meetings were held in the winter and summer each year. A two-day schedule for each meeting provided an opportunity for interactions among principal investigators, students, and postdocs. A poster exhibit provided students an arena to display and discuss their work.
- A Summer School was held in conjunction with the summer Group Meeting at which both internal and external experts were invited to give presentations and present their materials in a tutorial format.
PARTICIPATING UNIVERSITIES

<table>
<thead>
<tr>
<th>UNIVERSITY</th>
<th>YEARS PARTICIPATING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indiana University</td>
<td>1990-2001</td>
</tr>
<tr>
<td>Iowa State University</td>
<td>1990-1993</td>
</tr>
<tr>
<td>University of Missouri</td>
<td>1990-2001</td>
</tr>
<tr>
<td>University of Nebraska</td>
<td>1993-2001</td>
</tr>
<tr>
<td>University of Notre Dame</td>
<td>1990-2001</td>
</tr>
<tr>
<td>The Ohio State University</td>
<td>1990-2001</td>
</tr>
<tr>
<td>Purdue University</td>
<td>1990-2001</td>
</tr>
</tbody>
</table>

TYPICAL PROJECTS

Project Group I
- "Low Temperature Routes for Processing High-Temperature Superconductors"
- "Optical Studies of New -123 and -124 Materials"
- "Flux Pinning and Defect Studies in High T, Superconductors"
- "Investigation of Structure and Superconducting Property Relationships in Copper free Bismuth Oxides"
- "Hg- and Tl-Based Superconducting Films"
- "Microstructural Dependence of Critical Current Density in Melt Textured YBCO Superconductors"
- "Anisotropic Grain Growth and Isothermal Grain Alignment of Bulk, Superconducting Oxides"
- "Processing of Textured Superconducting Oxide/Noble Metal Microlaminates"
- "The Influence of Oxygen Pressure and Temperature on Oxygen Stoichiometry and Phase Equilibrium in the System BSCCO"
- "Effect of Substitutions on Superconducting Properties of High T, Materials"
- "Structural Defects and Interfaces in High Tc Superconducting Compounds"
- "High Temperature Superconducting Tubes for Magnetic Shielding Applications"

Project Group II
- "Statistical Mechanics of High Tc Superconductors and Flux Line Liquids"
- "Polarized Neutron Reflectivity Studies of High Temperature Superconductors"
- "Neutron Diffraction and Defect Studies of High Tc Superconductors"
- "Microwave and Optical Studies of High-Temperature Superconductors"
- "Superconducting Quantum Structures"
- "Transport Properties of YBCO Thin Films"
- "High T_c Superconducting Composites, Arrays and Crystals"
- "Atomic Beam Studies of Vortex Lattices at Superconductor Surfaces"
- "Device-Related Properties of High-T_c Films and Multilayers"
- "NMR Studies of Vortex Dynamics in High T_c Superconductors"
- "Equilibrium and Transport Properties of Vortices in High-Temperature Superconductors"
- "Transport Properties of High T_c Superconductors"
- "Study of Vortex Dynamics and Flux Pinning on Different Length Scales"
- "Vortices in Anisotropic Superconductors"
APPENDIX I

NOTABLE ACHIEVEMENTS

1990

P.J. McGinn, University of Notre Dame - The repeatability of our zone melting process has been greatly improved and we now have approximately a 90% success rate for texturing wires in our system. We have achieved zero field J_C values in textured YBa$_2$Cu$_3$O$_{6+x}$ greater than 75,000 A/cm2.

J. C. Garland, The Ohio State University - We have developed a composite high temperature superconductor which combines the mechanical advantages of normal metals (high thermal conductivity, machinability, low normal state resistivity) with the high transition temperatures of oxide superconductors. The composite is made by a powder metallurgy process in which a random matrix of silver metal is intermixed with a fused "skeleton" of yttrium barium copper oxide. Preliminary tests have shown that the composite is superconducting at 90K with as little as sixteen percent volume fraction of superconductor. Although the critical current density of the composite is relatively low, it is believed suitable for use as superconducting enclosures, shields, partitions, high Q tuned cavities and also as a superconducting bonding material. The composite may be readily machined, as demonstrated in a prototype composite cylinder that consists of 50% superconductor.

J.M. Honig and J. Spa1ek, Purdue University - Our investigation of superconductivity in the La$_2$NiO$_4$ system has been extended to include Cu additions. We have found that the progressive replacement of Ni by Cu in the La$_2$NiO$_4$ system reduces and ultimately completely suppresses the superconductivity in the host material. This underscores the importance of having a defect-free cation sublattice and that the very small Meissner effect originally reported in La$_2$NiO$_4$ could not have been due to accidental contamination by the cuprate.

H. Sato, Purdue University - We have been among the first to find that the quenching of Bi-Sr-Ca-Cu-O from melts result in a somewhat ductile amorphous materials with semiconducting properties of extremely high density, and its use as a precursor for producing high T_C superconductor. Utilizing the amorphous material as a precursor for preparing high T_C superconductor has produced many interesting and important results both in fundamental understanding and for applications. The results indicate that of
some of the non-equilibrium phases, obtained by annealing the precursor at low
temperatures, may have a relatively high superconducting transition temperature. The
research also shows the possibility of preparing superconducting ceramics of extremely
high density, higher than that obtained by the normal reactive sintering techniques.

J. R. Clem and V. G. Kogan, Iowa State University - A quantitative theory has been
developed for the structure of a vortex when the coherence length in the c direction is
smaller than the periodicity length s in the c direction using a description that takes into
account the atomic-level discreteness. We also have derived a general expression for the
energy per unit length of a vortex array in terms of a sum of integrals along the Josephson
junctions between adjacent layers. This has been used to derive an accurate expression
for H_{c1} of a Josephson vortex.

A. H. MacDonald and S. M. Girvin, Indiana University - The effect of the quantization of
the electron's cyclotron orbital motion has been observed in low-density layered
superconductors (by deHaas-van Alphen measurements). Along with Mike Norman at
Argonne National Labs we have completed a calculation which we believe to be a realistic
and quantitative study of this effect on the upper critical field for the YBCO
superconductors. We find that the usual semiclassical treatment of the magnetic field is
valid for fields strengths less than about 100 Tesla. At stronger fields quantum effects
begin to become important and T_c can actually increase with magnetic field. There is, in
principle, no upper limit on the field strength at which superconductivity can exist.

W. J. Tomasch and H. A. Blackstead, University of Notre Dame - We have identified
flux-flow in a short cylindrical polycrystalline sample of Y123, with the static magnetic
field applied in the plane of the sample. The data unambiguously show a resistivity which
varies as $\sin^2(\phi)$ superimposed on an isotropic phase-slip background. Here ϕ is the angle
between H and the rf current in the plane of the sample. This provides significant support
for a theory we have proposed describing losses in HTSC materials.

We have successfully fit our model for magnetostrictive dissipation to experimental
data from five different samples studied in our laboratory. This model includes a modified
expression for flux-flow and isotropic phase-slip resistivities which are added in series.
The phase slip resistivity is accurately described by an expression given by Tinkham. The
samples examined include high quality crystals of BSCCO, Y123, and Gd123 as well as
melt-textured Y123 and Gd123.
D. G. Stroud, Ohio State University - We have tentatively found that there is a transition with an irreversibility line in an arrangement of coupled granular superconductors similar to what was seen experimentally by Muller, Takashige, and Bednorz. Near this transition, there are power-law current-voltage characteristics. At lower temperatures, one sees a strong history-dependent behavior with a conductivity which depends on initial conditions of the sample before it was measured. This type of behavior is expected to lead to irreversible behavior in composite superconductors, analogous to what is seen in single-crystal superconductors with random pinning.

Alan I. Goldman, Douglas K. Finnemore, L. Scott Chumbley, Iowa State University - High temperature x-ray studies of the melting of Bi₂Sr₂Ca₁Cu₂O₈₋ₓ/Ag composites have been used to select precipitates that can be used as pinning centers for high performance conductors. The melting always takes place with the sequential formation of 3 distinct solid phases in equilibrium with the liquid, (Sr,Ca)₁Cu₄O₈, (Sr,Ca)₂Cu₄O₇, and (Sr,Ca)O. By controlling the temperature, the oxygen partial pressure, the dispersion of Ag and the amount of excess Bi, the nucleation and growth rates of these phases. This is the first step in understanding the melt-texture processing of these composites for high performance magnet conductor.

R. W. McCallum, L. S. Chumbley, M. J. Kramer, Iowa State University - Using a novel technique, we have produced highly disordered oxide precursors for RE123 materials. For the most common high temperature superconductor, Y123, this precursor material is compositionally homogeneous on a scale of a few microns, at least an order of magnitude better than has been reported with other melt-quenched techniques. For other rare earths, precursors have been made with an unprecedented glassy structure. With these disordered materials, the formation of the RE123 phase in not limited by diffusion of the elements through the sample. Thus, we are in a unique position to study the reaction pathways and crystallization of RE123. This will lead to better control of the microstructure, which in turn affects vital properties of the RE123 high temperature superconductors.

Paul J. McGinn, University of Notre Dame - A high critical current density (Jₖ), which describes the amount of current that can be passed through a superconducting wire, is a requirement for many applications of superconducting wires. For many applications a
value of 1×10^5 is desirable. We have developed a directional solidification technique for producing $\text{YBa}_2\text{Cu}_3\text{O}_{6+x}$ ($\text{Y}-123$) wires with transport critical current densities exceeding $9 \times 10^4 \text{A/cm}^2$. Additions of BaSnO_3 to $\text{Y}-123$ have been found to markedly improve the magnetization properties over similarly textured $\text{Y}-123$ wires in low fields. Magnetic critical current densities (J_c) in excess of $1.2 \times 10^5 \text{A/cm}^2$ in zero field, and $3.0 \times 10^4 \text{A/cm}^2$ at 1 T have been observed.

K. M. Choudhary and S. T. Ruggiero, University of Notre Dame - 1. We have established molecular beam deposition technique to prepare 123 high-temperature superconductor thin films. These films show complete superconductivity at 90K. 2. In our laboratory, the thin film deposition process is monitored by conventional sensors, such as quartz crystal thin film thickness monitor. Also, the films are produced in a low-cost ultrahigh vacuum (UHV) system. These are achievements in thin film processing which can make an impact on superconductivity applications in microelectronic devices. 3. For the first time, we have demonstrated that single phase superconductor thin films can be grown in which the ratio of dysprosium, barium and copper is $(1+x):(2-x):3$ instead of 1:2:3. 4. The value of x in $(1+x)(2-x)3$ superconductors have been determined by simple material characterization techniques such as X-ray diffraction and resistivity measurements. Hence, we have demonstrated that conventional methods can be used to determine the composition and quality of the film and, consequently, this knowledge can be used to prepare high quality thin films for superconductivity applications. 5. We are also working to improve the electronic properties of thin film superconductors by substrate modification. This involves the chemical and ion-beam etching of micro-steps in substrates and deposition of noble metal droplets to introduce flux pinning sites.

James C. Garland, The Ohio State University - Shortly after their discovery, high-temperature ceramic superconductors were found to be brittle, poor conductors of heat, and environmentally unstable. These undesirable physical properties of the pure high-T_C YBCO superconductors limited their role in potentially useful technological applications, where machining and device fabrication were required. In order to improve the mechanical and thermal properties of high-T_C superconducting oxides, we have developed a two-phase random bulk composite material which consists of intermixed "skeltons" of normal metal phase (silver) and a fused superconducting ceramic oxide phase (YBCO). The resulting Ag/YBCO composite was formed by combining powders of the metal and superconducting oxides and then compressing the mixture into a solid under uniaxial pressure, followed by
the required heat treatments (oxygen annealing and sintering). We found that with only 29% of superconducting phase, the composite retains the desirable electrical and magnetic properties (e.g., zero electrical resistance, a high superconducting transition temperature, well-developed Meissner effect) of high T_C superconducting oxides. This composite, however, was not expected to be suited for high current density applications, such as large magnetic fields or power transmission. Rather, potential commercial uses include superconducting enclosures, partitions, shields, motor and generator armatures, contactors and relays, as well as cavities, filters, duplexer and other high-Q devices for use in satellites, avionics, and other specialized technologies.

J. M. Honig and J. Spalek, Purdue University - We have investigated the magnetic ordering effects encountered in the La$_{2-x}$Sr$_x$NiO$_4$ and in the La$_2$NiO$_{4+\delta}$ systems, concerning which there has been great uncertainty. By systematically varying the Sr content or the amount of excess oxygen in the parent substance La$_2$NiO$_4$ we were able for the first time to demonstrate how the magnetic ordering temperature T_N changes with composition in the two cases. Surprisingly, T_N remains almost independent of how much Sr is added to the system in the composition range $0 \leq x \leq 0.25$. By contrast, T_N is extremely sensitive to even slight departures from the ideal La$_2$NiO$_4$ stoichiometry. These differences were totally unanticipated and require a careful theoretical analysis.

We also discovered that, in the range $0.05 \leq x \leq 0.25$, La$_{2-x}$Sr$_x$NiO$_4$ is a spin glass, and we have studied the temporal variation of the remanent magnetization in these oxides. The result indicates that La$_2$NiO$_4$ and its alloys are closely related in their normal (as opposed to superconducting) properties to the corresponding cuprate systems.

We have also investigated the superconducting characteristics of La$_{1.8}$Sr$_{0.2}$Cu$_{1-y}$Ni$_y$O$_{4+\delta}$ and have demonstrated that the replacement of copper by even small amounts of nickel adversely affects superconductivity of the parent cuprate, so that for $y \geq 0.05$ the material remains in the normal state at all temperatures.

Hiroshi Sato, Purdue University - Growth characteristics of high T_C superconductors obtained from amorphous precursors in the Bi-Sr-Ca-Cu-O system were investigated in detail. The material in this system can be obtained in amorphous forms if quenched from melt, and high T_C superconducting phases grow by annealing such amorphous precursors at appropriate temperatures. The characteristics of growth give us many instructive information with respect to superconducting characteristics of the material. The major interest in this study at this stage was to understand how to control growth characteristics.
of high \(T_c \) phases out of amorphous precursors so that reliable materials in this system can be obtained for practical application. The other objective was to elucidate the formation of grain boundaries which might serve as sources for weak superconducting linkage in this system. The work was performed in materials with the composition corresponding to \(\text{Bi}_2\text{Sr}_2\text{Ca}_{n-1}\text{Cu}_n\text{O}_{2n+4} \), with \(n=2 \), or so called 2212 materials.

One of the undesirable features of the materials obtained by annealing the amorphous precursors at temperatures between 750°C to 850°C in air (commonly considered to be the most desirable annealing condition for this type of material), is that they tend to exhibit a characteristic "two step" superconducting behavior. On the other hand, the replacement of some of Bi by Pb tends to eliminate this behavior and transition characteristic becomes sharper. We came to a conclusion that this behavior should be interpreted to be due to an inhomogeneity in the distribution of oxygen content, while, the addition of Pb increases the diffusivity of oxygen and thus makes the distribution of oxygen more homogeneous. This conclusion is supported by the increase in the magnetic shielding fraction by the addition of Pb and also by the observation of microwave resistivity.

By annealing amorphous precursors of the 2212 composition, high resolution electron microscopy reveals that high \(T_c \) phases of the \(n=1 \) and the \(n=2 \) structures develop depending on annealing temperature and time. Annealing at high temperatures above 700°C, the \(n=1 \) phase mixes with the \(n=2 \) phase in extremely thin platelets (of the width corresponding to the unit cell size and is called the microsyntactic intergrowth). Grain boundaries nucleate at an early state and grow. The types of grain boundaries thus formed are limited to a small number of coincidence boundaries such as 90° twist boundaries, 180° twist boundaries (in the \(n=1 \) structure), and (015) twin boundaries. Among these, the (015) twin boundaries (twins with the (015) twin boundaries) although common in materials obtained from the amorphous precursors, have not been found in sintered materials. Detailed characterization of this type of twin boundaries, including their defects, was made by means of high resolution electron microscopy.

John R. Clem and Vladimir G. Kogan, Iowa State University - One of the key obstacles to widespread applications of bulk high-temperature copper-oxide superconductors is that, despite their ability to remain superconducting at high temperatures, these materials usually can carry only small electrical currents before breaking down and producing significant electrical resistance and energy losses. An important characteristic of the high-temperature copper-oxide superconductors is that they all have layered atomic structures,
which makes their electrical and magnetic properties extremely anisotropic. The most anisotropic materials have the advantage of having the highest superconducting transition temperatures but simultaneously the disadvantage of carrying the least amount of loss-free electrical current. Our research supported by the Midwest Superconductivity Consortium, has made significant theoretical progress leading to the understanding of the relationship between the anisotropy of the high-temperature superconductors and their current-carrying ability at liquid-nitrogen temperature, where most applications are anticipated. The theory involves calculations of the magnetic structure whose motion produces energy dissipation. The ultimate goal of this research is to develop a quantitative theory for the maximum practical current densities of the high-temperature superconductors.

Thomas R. Lemberger, The Ohio State University - We have made three important advances in the past year. 1. An essential major technical achievement is fabrication of very long and narrow YBa2Cu3O7-_ films (15 cm x 0.09 cm), while maintaining a very high critical current density of $J_C = 2 \times 10^6$ A/cm² at 4.2 K. 2. A technical and scientific achievement is the first ever measurement of Bernoulli voltage in a high-Tc superconductor, with the necessary high sensitivity (1 nV) required to study films with $J_C = 2 \times 10^6$ A/cm². 3. A third advance involves expansion of the scope of the study. After realizing that precise interpretation of our Bernoulli measurements would be greatly augmented by measurement of the kinetic inductance L_X of the superconducting electrons in the same sample films, in the past several months we set up an apparatus to measure L_X and successfully tested it by measuring L_X on a low-Tc Pb film. This is a difficult measurement because the physical inductance of the sample film is 1000 times larger than the kinetic inductance. Data is shown on the following page.

A. H. MacDonald and S. M. Girvin, Indiana University - We have studied high-temperature superconductors in two regimes, both involving quantum-mechanical effects: near the metal-insulator transition induced by strong Coulomb correlations and in the regime of high magnetic fields. We have demonstrated that near the metal-insulator transition where T_C is suppressed, quantum fluctuations can dominate over thermal fluctuations in the order parameter and hence drive the transition. We have demonstrated the existence of universal scaling properties of the conductivity at the critical point separating the insulating and superconducting phases in thin films. The phase diagram
we obtain is in good qualitative agreement with that found by the Minnesota group of Goldman et al. for epitaxial PrBaCuO films.

We have obtained the first solutions of the microscopic mean-field Bogoljubov-deGennes equations for the superconducting order parameter in the two-dimensional limit in a strong magnetic field. This is of particular interest in high-T_c materials because of their quasi-two-dimensional structures and very high upper critical fields. Our calculations go beyond the usual Ginsburg-Landau approximation to include microscopic quantum effects of the magnetic field. We find in some limits, unusual additional vortex structure in the Abrikosov flux lattice state.

W. J. Tomasz and H. A. Blackstead, University of Notre Dame - During the past year, we have carried out numerous microwave dissipation experiments on a variety of HTSC materials, including sintered polycrystalline, melt textured single crystal and thin film samples. We have sought to test models describing the observed microwave power dissipation in terms of conventional loss mechanisms. A model, which has been found to work, includes a modified expression for flux-flow, which provides for physically correct high-temperature and low-temperature limits, and phase-slip resistivity which arises in a network of Josephson junctions. Flux-flow resistivity arises as a consequence of the motion of quantized vortex cores in the superconductor. Phase-slip resistivity is a manifestation of time-dependent changes in the magnetic flux in a Josephson junction.

Josephson junctions, consisting of thin insulating barriers between superconductors, are generally believed to be present in the boundaries between superconducting crystalline grains. In addition to the analysis of our experiments, we have successfully treated data in the literature from other workers. In every case for which the quality of the materials justified a detailed examination, we have fit a four parameter model to the data, with typical errors on the order of several percent. The implications of the success of this model are significant for potential applications of HTSC materials. 1. Flux-flow is typically responsible for only 10-15% of the observed dissipation at high current densities. Therefore, efforts to substantially improve the current carrying capacity of these materials by the introduction of pinning centers designed to limit the motion of vortex cores will not be successful. 2. Phase-slip in Josephson junctions is the dominant resistivity mechanism. The so-called weak-link (Josephson junction) "problem" appears to be intrinsic to all materials studied, even high quality single crystals. 3. It is concluded that grain boundaries are not the only source of weak links. 4. Elimination of the weak-links (Josephson junctions) is a requirement for this class of superconducting materials to be useful in high current density applications.
M. W. McElfresh and R. Reifenberger, Purdue University - The largest values of critical current densities (J_c) for high temperature superconductors (<10^7 A/cm^2) are routinely reported for thin films prepared by a variety of methods. Using both scanning tunneling and atomic force microscopies we have studied the surfaces of YBaCuO thin films in search of structural features that may help elucidate the identity of the strong pinning defect centers. Several features have been observed: spirals at a density of ~ 10^17/cm^2 and, at much higher densities, steps associated with both the spirals and a common "island type" growth structure. We recently submitted a paper proposing that the steps may be the universal flux-pinning feature of YBaCuO thin films. This hypothesis was backed up by calculations which showed that a step one unit cell in height had a pinning energy of 3 kT (at T_C). This implies that a 500 Å thick film covered with single steps could produce a $J_C > 5 \times 10^6$ A/cm^2.

David G. Stroud, The Ohio State University - During the first year of the grant, our work has been directed at modeling transport properties of high-temperature superconductors (primarily in the form of composites) at zero and strong magnetic fields. In a recent publication^1, we have found that the current-voltage (IV) characteristics of a granular superconductor show clear signs of a transition from a vortex fluid to a vortex glass, as predicted by M.P.A. Fisher and collaborators^2. We have found similar evidence in a recent model calculation of the a.c. conductivity of a model granular superconductor^3. Such transitions, we believe, may characterize disordered high-temperature superconductors in a strong magnetic field.

We have also carried out direct calculations of the IV characteristics of Josephson-coupled granular superconductors at T = 0. In a preliminary report^4, we have found that such systems have a critical current which initially decreases with increasing magnetic field, then reaches a plateau. These results may offer an explanation of the plateaus in critical currents frequently seen as a function of magnetic field in high-temperature superconducting composites^5.

References.
4. K.H. Lee and D. Stroud, to be submitted to Phys. Rev. B.
William B. Yelon and John W. Farmer, University of Missouri-Columbia - The excitement over the new class of materials that exhibit superconductivity at relatively high temperatures (above liquid nitrogen) was tempered by the fact that these materials could not conduct large amounts of current. The current capacity was a significant hurdle to many practical applications of high temperature superconductors (HTC's). Recently, it was found that radiation induced defects can dramatically increase the current capacity of HTC's. We have investigated the role of neutron irradiation defects in enhancing the critical current in work at the University of Missouri through the MISCON funded project "Neutron Diffraction and Defect Studies of High Temperature Superconductors". Irradiation has increased the current capacity by more than a factor of ten with current densities greater than 10^5 amps/cm2. Current density at this level is well within the range of the requirements of most of the more exciting applications of high temperature superconductors. In addition, their work has shown that neutron irradiation is the most effective form of irradiation damage to enhance the critical current. Furthermore, neutron irradiation may be more effective than any other method.

1992

T.G. Miller, M. McElfresh and R. Reifenberger, Purdue University - The tunneling conductance from pulsed laser deposited films of YBa$_2$Cu$_3$O$_{7-\delta}$ revealed a rich fine structure in both the sub-gap and near-gap regions, which corresponds to the density of electronic states on the different layered planes.

A.H. MacDonald and S.M. Girvin, Indiana University - Monte Carlo simulations of vortex dynamics yielded a superfluid-density spatial correlation function which advances the understanding of the flux-lattice melting transition.

W.J. Tomaszch and E. Moser, University of Notre Dame, and J.R. Clem and V.G. Kogan, Iowa State University - The influence of vortices upon the transmission and reflection coefficients for infrared radiation incident upon high-temperature superconductors was theoretically described.

D.V. Baxter, K.G. Caulton and M.H. Chisholm, Indiana University - A new class of ligand was developed, based on "β-diketonate" class of ligands, which encapsulates YBCO metals for use as precursors for the low-temperature processing of high-temperature superconductors.
K.H. Sandhage, Ohio State University and P.J. McGinn, University of Notre Dame - A novel "oscillating oxidation" process yielded superconducting microlaminates composed of alternating YBa2Cu3Oy-rich and Ag-rich layers.

W.J. Tomasch and J.K. Furdyyna, University of Notre Dame - A leadless nondestructive microwave technique was developed for the quantitative evaluation of high-temperature superconductors in the presence of substantial d.c. magnetic fields.

1993

P. McGinn, University of Notre Dame, E. Kvam, Purdue University, and D. Shi, Argonne National Laboratory - YBCO processed by the solid-liquid melt growth (SLMG) process form textured 123 phase with fine (ca 100nm) 211-phase precipitates. These samples exhibit extremely good low temperature flux pinning properties. Argonne National Laboratory has filed a patent application for this process.

A. H. MacDonald and S. M. Girvin, Indiana University - A formalism which for the first time makes fully microscopic calculations of the mixed state has been developed and is being applied to calculations of the microwave conductivity.

D. G. Stroud, Ohio State University - The flux-lattice melting temperature of single-crystal YBCO has been calculated without any adjustable parameters, in excellent agreement with experimental results.

J. C. Garland, Ohio State University - Superconducting junction arrays, consisting of 300x300 proximity-coupled, weak-link junctions fabricated of Ag/YBa2Cu3O7 on SrTiO3 substrates, have been fabricated and characterized. These junctions exhibit a Kosterlitz-Thouless-type transition in the superconducting state.

J. R. Clem and V. G. Kogan, Iowa State University - Some key superconducting characteristics for BSCCO have been extracted from the theory of thermal fluctuations of vortices in layered superconductors. These properties include the temperature dependencies of the penetration depth, λab, the upper critical field, Hc2, and the Ginzberg-Landau parameter, κ.

G. Lafyatis and T. Lemberger, Ohio State University - The first direct measurement of a vortex lattice in a superconducting niobium film was demonstrated by measuring NMR transitions in an atomic beam directed across the surface of the film.
D. V. Baxter, K. G. Caulton, and M. H. Chisholm, Indiana University - The thermal decomposition of 124 leads to the eventual formation of 211, Cu$_2$BaO$_2$, and other phases under a three-step process. In contrast to earlier work, the decomposition of 124, per se, takes place in one step with a characteristic activation energy.

T. R. Lemberger, Ohio State University - The first direct determination of the magnetic penetration depth was made for an oxygen-depleted YBCO film. The results reveal that the penetration depth increases with oxygen depletion, but that its temperature dependence is unchanged, consistent with d-wave superconductivity.

M. W. McElfresh and R. G. Reifenberger, Purdue University - A three-tunnel capacitor model for single-electron tunneling was successfully applied to explain the highly nonlinear I-V characteristics obtained with TlBa$_2$(Ca$_{0.8}$Y$_{0.2}$)Cu$_{2}$O$_7$ films.

W. B. Yelon and J. W. Farmer, University of Missouri - A new, direct method has been developed for analyzing magnetic relaxation data. With this method it is now possible to determine the dependence of the pinning potential, U(m), of the magnetic induction, B, as well as to see the effects of oxidation-induced pinning centers on U(m).

M. W. McElfresh and R. G. Reifenberger, Purdue University - Two vortex phase transitions have been observed for TI-2212. The lower temperature transition corresponds to a vortex-glass transition while the higher temperature transition corresponds to a pancake-vortex coupling transition.

C. Pennington, Ohio State University - Measurements of 2-dimensional 89Y NMR in YBa$_2$Cu$_3$O$_7$ to probe vortex dynamics reveal that in fields of several Tesla, vortices do not make spatial jumps of distances comparable to the lattice spacing.

M. Chandrasekhar, University of Missouri - The first Raman scattering studies of the phonon modes of YBa$_2$Cu$_4$O$_8$ (Y124) under pressure have been made. The mode Gr"{u}neisen parameters of the phonons present in both Y124 and Y123 scale with their bulk moduli. However, the chain modes that are Raman allowed only in Y124 are anomalously different.

W. J. Tomasch and J. K. Furdyna, University of Notre Dame - Improvements have been made to a leadless, nondestructive microwave technique for characterizing high-temperature superconductors in the presence of a sustained dc magnetic field (0-7 Tesla).
It is now possible to infer with reasonable agreement microwave surface impedance directly from the data.

E. Kvam, Purdue University - For YBCO with 211 additions, the enhancement of the critical current through flux pinning has been found to depend on the size of the 211 particles. However, the pinning seems to be induced more by extended defects (dislocations and CuO layer stacking faults) associated with the particles rather than by the particles themselves.

1994

A. E. Miller and S. Bandyopadhyay, University of Notre Dame - A quasi-periodic array of nanometer-scale, Pb quantum dots has exhibited quantum confinement. Quantum confinement resulted in a broadening of the transition temperature from 7°K for bulk lead to 30-7°K from onset to completion for the quantum array.

M. W. McElfresh and E. P. Kvam, Purdue University - Studies on deoxygenated YBCO show that the theoretically-predicted dimensional crossover field Ho decreases as anisotropy increases. All vortex-glass phase boundaries can be collapsed onto a single universal curve, suggesting that there is a general magnetic phase diagram for all HTS materials.

J. M. Honig and J. SpaI ek, Purdue University - A quantitative model of a three-dimensional superconductor has been developed which predicts the change in transition temperature with the number of conducting planes.

J. Betanabhatla, University of Nebraska-Omaha, J. R. Hardy, University of Nebraska-Lincoln, R. R. Berliner, University of Missouri-Columbia - Superconductivity has been induced for the first time in materials of the phase Ba1+xBi1-xO3-d. The transition temperature is in the vicinity of 25°K, which is the highest reported for a non-cubic bismuth oxide phase.

K. P. Trumble, K. J. Bowman and M. W. McElfresh, Purdue University - Reproducible processing of silver-clad BSCCO tubes by centrifugal slip casting was demonstrated, and a patent for the process filed. This work demonstrated that a high degree of preferred orientation in the centrifugally-cast tubes enables significant densification.
C. Pennington, The Ohio State University - NMR measurements with simultaneously-applied pulsed currents confirm that the vortex system in single-crystal YBCO is in the "liquid" state within the resistive transition temperature region, and that the diffusion distances are much greater than the intervortex spacing within times less than 100 μsec.

P. J. McGinn, University of Notre Dame, and K. H. Sandhage, The Ohio State University - The melt-texturing of YBCO was found possible in metal-precursor-derived laminates fabricated from Y-Ba-Cu-Ag-Pd tapes without melting the Ag-Pd noble metal alloy.

G. Lavyatis, The Ohio State University - Atomic beam studies of the vortex lattice in Nb films can be fitted with a hexagonal lattice which has sample-wide orientation order and short-range (about 5 lattice constants) translational order.

P. J. McGinn, University of Notre Dame - Significant improvements in the magnetization of YBCO have been achieved by Nd doping; and extended hold times above the peritectic result in increased pinning (and Jc) at 77°K, attributed to increased dislocation density with 211 phase coarsening.

T. R. Lemberger, The Ohio State University - Highly-refined measurements of the magnetic penetration depth in YBCO films now leave no doubt that dopants increase the penetration depth without affecting its T dependence.

G. F. Giuliani, Purdue University - For S-I-S tunneling junctions under suitable situations the inelastic scattering of tunneling electrons with barrier phonons can lead to an increase in tunneling probability.

D. G. Stroud, The Ohio State University - Studies of flux melting in highly anisotropic, high-Tc superconductors, such as BSCCO, show strong evidence for a dimensionality crossover (3D to 2D transition) which is accompanied with a conspicuous change from mean-field-like to fluctuation-dominated behavior.

D. V. Baxter, K. G. Caulton and M. H. Chisholm, Indiana University - A molecular precursor with the correct Y:Ba stoichiometry of YBCO has been successfully synthesized.

S. K. Malik, Tata Institute of Fundamental Research and W. B. Yelon and J. W. Farmer, University of Missouri-Columbia - A new superconducting phase, RNi₂B₂C, was
synthesized with Y and Er. The Y and Er samples had T_c's of 15.5°K and 11°K, respectively.

E. P. Kvam, Purdue University - In YBCO with 211 additions, the flux pinning seems to be induced by extended defects (dislocations and CuO-layer stacking faults) associated with the particles rather than directly by the particles themselves.

J. M. Honig and J. Spaak, Purdue University - Fluorination has been found to enhance significantly the superconductivity of La$_{2-x}$Sr$_x$CuO$_{4+y}$.

G. F. Giuliani, Purdue University - In small Josephson junctions, Abrikosov vortex penetration tends to increase I_c. Specifically, for suitable vortex configurations the dependence $I_c(H)$ is determined by the magnetization in such a way to lead to an increasing $I_c(H)$.

G. L. Liedl, A. L. Bement, Jr., and S. Mansour, Purdue University - The preferred orientation of YBCO films deposited on MgO substrates by the metallo-organic deposition process can be varied with increasing firing temperature from a broad fiber texture to an epitaxial orientation.

H. A. Blackstead, University of Notre Dame - The Blackstead-Dow model, which asserts that Ba-site substitution by magnetic Pr+3 ions breaks electron-pairs while rare-earth site substitution does not, has been verified experimentally.

A. H. MacDonald and S. M. Girvin, Indiana University - Monte Carlo calculations establish that the superconducting vortex state does not occur at finite temperatures in the limit of 2D films with point disorder.

J. C. Garland, The Ohio State University - The H-T phase diagram for single-crystal BSCCO consists of a penetration (or depinning) field boundary and a 2D-3D crossover field boundary (which separates phases of 3D vortex lines and interacting 2D vortices) for c-axis-oriented fields of $H>Hc2$.

P. J. McGinn, University of Notre Dame, and K. H. Sandhage - The Ohio State University A process for fabricating spiral-wound tubes from Ag-Pd sheet has been developed for the powder-in-tube processing of YBCO composites.
G. Lafyatis, The Ohio State University - The first direct measurement of temperature-driven dynamics in the vortex chain state of a YBCO untwinned single crystal was performed using an atomic-beam imaging technique. The predictions of the London model were confirmed, and a hysteresis between the freezing and melting of the vortex chains was observed.

J. M. Honig and J. Sparék, Purdue University - A quantitative, 3-dimensional model of a high-temperature superconductor as a non-Fermi liquid has been formulated which calculates explicitly the transition temperature and the spatial modulation of the order parameter. Agreement between theory and experiment is excellent. The derived formula allows for a prediction of the T_c value within a given family for the number of CuO$_2$ layers not yet studied experimentally to include a limiting value of T_c for a large number of CuO$_2$ planes within the group.

S-H Liou, University of Nebraska-Lincoln - For the first time (Hg,Tl)-1223 films have been fabricated and have exhibited the highest T_c (133K at onset) reported for a superconducting film.

D. V. Baxter, K. G. Caulton and M. H. Chisholm, Indiana University - The reagents Et$_3$PO and Me$_3$NO have been found to bind to BaCu$_2$(OtBu)$_4$ (normally insoluble) and solubilize it. This finding makes possible the processing of this precursor into oxides by themolysis and hydrolysis methods.

A. H. MacDonald and S. Girvin, Indiana University - A technique for determining the absolute time scales for relaxation dynamics near the vortex glass transition has been developed. Knowledge of the absolute time scale allows an experimentalist to predict the scale of frequency needed to see deviations from a DC response.

D. G. Stroud, The Ohio State University - The first calculation of the fluctuation magnetization in a high-T_c superconductor (in this case YBCO) has been carried out in excellent agreement with experiment. This result is important because it shows that we now have an excellent description of the thermodynamics of flux motion in high-T_c superconductors, especially at high fields.
E. P. Kvam, Purdue University - The possibility of growing high-quality, biaxially-aligned, thin films of YBCO with distinctly different in-plane directions on vicinal SrTiO₃ substrates was demonstrated for the first time. This result is particular significant for some applications and for the study of transport properties of thin films.

C. Pennington, The Ohio State University - Transverse relaxation (T₂) contribution in YBCO, resulting from the ⁸⁹Y-⁶³.⁶⁵Cu magnetic dipole interaction, has been calculated using no adjustable parameters. This relaxation mechanism fully explains normal state data.

J.C. Garland, The Ohio State University - A method has been developed for producing BSCCO single-crystal samples that are ideally suited for studying the vortex glass phase in a layered system where the number of Josephson-coupled Cu-O bilayers can be varied.

T.R. Lemberger, The Ohio State University - The first observation of two superconducting transitions in λ(T) in a multilayer superconductor have been made in films composed of several alternating layers of Bi₂₂₀₁ and Bi₂₂₇₈. We observed that the proximity effect between the two layers increases the transition temperature of the Bi₂₂₀₁ layer from 20K to 40K.

M.W. McElfresh and E.P. Kvam, Purdue University - Modifications in the relaxation of magnetic flux in strong pinning superconductors due to demagnetization effects have been determined both experimentally and theoretically. The distribution of currents is quite different from that expected from the standard Bean Critical State model and as a result the relaxation behavior is different from the expected behavior.

Ken H. Sandhage, The Ohio State University and Paul J. McGinn, University of Notre Dame - A new method has been developed for fabricating YBa₂Cu₃O₇/noble metal microlaminates which takes advantage of the malleability of mixtures of Y and Ba powders. Y-Ba powder packed between an inner ingot of Ag-Cu and an outer tube of Ag can be rolled to form a geometrically uniform Y-Ba inner layer, which when oxidized forms YBa₂Cu₃O₇ by concurrent diffusion of Cu from the Ag-Cu core.

J. Betanabhatla, University of Nebraska-Omaha, J. R. Hardy, University of Nebraska-Lincoln, and R. R. Berliner, University of Missouri-Columbia - Pure PrBa₂Cu₃O₇₋₅ has been synthesized in order to understand the effect of Pr substitution on superconductivity.
of "124" cuprate phase, its use as a buffer layer in thin film device applications, and why it is not a superconductor.

T.R. Lemberger, The Ohio State University - It has been shown that the T-linear behavior in clean YBCO crystals and films comes from nodes in the order parameter and not from thermal fluctuations suggested by current theory.

Ken H. Sandhage, The Ohio State University - A solid-state process involving elevated oxygen pressures has been developed to align grains in silver-sheathed Bi2Sr2Ca1Cu2O8+δ. This process avoids the coarsening of non-superconducting grains that occurs in commonly used melt texturing.

P. McGinn, University of Notre Dame - The melt texturing of Y-123 samples in air with excess rare earth additions (Nd2O3, La2O3, and Sm2O3) showed improvements in both magnetization and Tc. The enhanced magnetization is thought to be due to pinning effects caused by rare earth ions being present on Y3+ and/or Ba2+ sites in the 123 lattice.

P. Muzikar, Purdue University - Calculations of the effects of impurity scattering for different types of superconducting order parameters have shown that for certain types of order parameters, the addition of impurity scattering can actually increase the superfluid density in certain directions.

David R. Gaskell, Purdue University - The production of phase-pure 2212 and 2223 in the system Bi-Sr-Ca-Cu-O has been achieved permitting the study of the influence of oxygen pressure and temperature on the partitioning of Ca and Sr between equilibrated 2212-2223 couples.

G.F. Giuliani, Purdue University - An extended theory to all orders of inelastic scattering in a Josephson junction predicts that in suitable situations the inelastic scattering can enhance the pair tunneling and lead to a corresponding maximum in the critical current.

H.A. Blackstead, University of Notre Dame - For the first time, dissipation from Josephson vortices has been demonstrated in (Y,Pr)Ba2Cu3O7. These vortices strongly effect the electromagnetic properties of this layered superconductor.
S-H Liou, University of Nebraska-Lincoln - A reproducible fabrication process has been developed which yields patterned YBCO/STO/YBCO multilayer circuits with the best critical current density and transition temperature reported to date.

J.C. Garland, The Ohio State University - The first direct evidence for separate vortex lattice melting and line decoupling phase transitions has been reported for high-quality BSCCO single crystals. Also, the first observation that the melting transition is current dependent suggests that this transition occurs away from thermodynamic equilibrium in the presence of a driving current.

A.H. McDonald and S.M. Girvin, Indiana University - A model has been developed that captures the principal qualitative aspects of superconducting fluctuations on the thermodynamics of superconductors at any magnetic field strength.

M.W. McElfresh, P. Muzikar and E.P. Kvam, Purdue University - Evidence has been found for 3D vortex fluctuations along the entire phase boundary of the vortex liquid to solid transition for both low and high magnetic fields in deoxygenated YBCO thin films. At the lower fields, the fluctuations are of the 3D XY character. At high magnetic fields they correspond to the Landau level picture.

H.A. Blackstead, University of Notre Dame - The independent observation by two Japanese investigators that Pr123 superconducts at $T_c \sim 90K$ confirms a key prediction by Dow and Blackstead and shows that Pr123 would be unsuitable as an insulation material for S-I-S junctions.

D.G. Stroud, The Ohio State University - Monte Carlo simulations give time-dependent models of flux melting, to include subdiffusive motion of individual disclinations in a dense liquid phase, that gives a calculated melting curve in excellent with experiment.

P.F. Micelli, University of Missouri-Columbia - The capability of measuring Ångstrom-scale variations in the surface roughness of buried interface layers in YBCO films has been demonstrated using polarized neutron reflectivity.

J. Betanabhatla, University of Nebraska-Omaha, J.R. Hardy, University of Nebraska-Lincoln, and R.R. Berliner, University of Missouri-Columbia - Pure Y124 has been synthesized for the first time at ambient oxygen pressure which will facilitate the fabrication of S-I-S Josephson junction devices.
W. B. Yelon, University of Missouri-Columbia - Studies of NdBa$_{2-x}$Pr$_x$Cu$_3$O$_7$ show that superconductivity persists up to $x = 0.3$. The distinct preference for Pr to occupy the Ba site casts doubt on the hypothesis that a small amount of Pr on the Ba site is responsible for the suppression of T_c.

D.G. Stroud, The Ohio State University - Clear numerical evidence for a dynamical phase transition in the I-V characteristics of a moving vortex lattice has been obtained in excellent agreement with experiment.

Meera Chandrasekhar, University of Missouri-Columbia - Measurements of phonon vibrational frequencies have shown conclusively that nickel substitutes preferentially in the Cu chain sites in YBCO.

Paul J. McGinn, University of Notre Dame - Two first-time observations have been made for YBCO: the segregation of Y211 during the zone melting of wires and the occurrence of a magnetization peak effect in Ce-doped YBCO.

S.T. Ruggiero, University of Notre Dame - The first measurements of the responsivity of YBCO to far-infrared wavelengths at 25 microns have been accomplished.

H.A. Blackstead, University of Notre Dame - The first observation of the coexistence of ferromagnetism and superconductivity has been made in two cuprate superconductors.

G.F. Giuliani, Purdue University - A theory has been developed of the proximity effect in an S-N-S Josephson junction in the presence of an inelastic interaction of the tunneling electrons with phonons in the barrier region.

T.R. Lemberger, The Ohio State University - Measurements of inductive and resistive transitions in a variety of YBCO films show that they are always different from those observed in bulk crystals. Furthermore, the real and imaginary parts of the conductivity violate the Kramers-Kronig relations.

John W. Farmer, University of Missouri-Columbia - Measurements and analyses of flux creep have demonstrated a universal mechanism for single fluxoid pinning in "clean" single crystals of YBCO.
Paul J. McGinn, University of Notre Dame and Ken H. Sandhage, The Ohio State University - A mechanical segregation/metallic precursor approach has been successfully used to fabricate BSCCO/Ag laminate tapes.

Meera Chandrasekhar, University of Missouri-Columbia - The first measurement of a distinct anomaly in the phonon frequency and linewidth of Hg 1201 was reported.

K.P. Trumble, K.J. Bowman and M.W. McElfresh, Purdue University - The first direct observations of the effects of silver and oxygen partial pressure on the thermal stability of BSCCO-2223 have been characterized that not only clear up inconsistencies in the literature but also provide new directions in the orientation processing of silver-BSCCO products.

Ken H. Sandhage, The Ohio State University - The effect of cation non-stoichiometry on the grain growth behavior of Nd_{1-x}Ba_{2-x}Cu_{2}O_{y} (for x ≤ 0.4) has been determined.

E.P. Kvam, Purdue University - New variants of crystallographic orientations of YBCO have been observed when grown by laser ablation on SrTiO_{3} buffer layers on zirconia substrates.

1997

S-H. Liou, University of Nebraska-Lincoln - A fabrication process has been developed that allows for the first time multilevel high-temperature superconducting structures consisting of bicrystal grain boundary Josephson junctions in a stacked geometry. These structures exhibit interesting electronic properties and can be used to make novel device structures such as very low impedance dc SQUID interferometers.

P.F. Micelli, University of Missouri-Columbia - For the first time it has been demonstrated that neutrons can observe vortices in a thin film superconductor, providing the potentiality of directly measuring vortex distributions in thin film samples.

P. Muzikar, Purdue University - For the first time, exact solutions for the changes in the spatial distribution of the order parameter and magnetic field around a stationary vortex line pinned at an impurity have been achieved.

D.G. Stroud, The Ohio State University - Theoretical modeling of flux lattice melting behavior have shown that two separate transitions occur at low and high fields,
respectively. At high fields the thermodynamics are dominated by field-induced vortices and at low fields by the influence of thermally-activated vortex loops.

C. Pennington, The Ohio State University - Nuclear magnetic resonance spin echo techniques have been developed as a quantitative probe of vortex dynamics in high-temperature superconductors. Measurements in the vortex solid state show that small displacements of vortices from equilibrium positions occur over short time scales.

H.A. Blackstead, University of Notre Dame - Granular superconductivity at ~12K has been observed in a predicted superconducting compound, Gd$_2$Ce$_2$Sr$_2$Cu$_2$TiO$_{10}$. The previously predicted superconductivity in PrBa$_2$Cu$_2$O$_y$ (Pr-123) has now been confirmed independently by several research groups in Japan.

J. Betanabhatla, University of Nebraska-Omaha; J.R. Hardy, University of Nebraska-Lincoln; and R.R. Berliner, University of Missouri-Columbia - Neutron diffraction studies on 59Ni substituted YBCO indicate for the first time that the nickel atoms in both the “123” and “124” phases distribute randomly on both planes and chain copper sites. This finding is at variance with a number of theoretical models for high-T_c superconductivity.

K.H. Sandhage, The Ohio State University - A method for fabricating laminates of silver and BSCCO-2212 with excellent geometric uniformity relative to OPIT (oxide powder in tube) tapes has been developed. The oxide/Ag interfaces of such laminates are much less rough and flatter than is typically observed for OPIT tapes.

P.J. McGinn, University of Notre Dame - Ceria (CeO$_2$) substitution for platinum in melt-textured YBCO “123” pellets can provide comparable levitation properties and can be effective in driving down levitator costs.

J.C. Garland, The Ohio State University - Transport measurements of BSCCO single crystals in external magnetic fields have revealed that, in contrast to the vortex glass model, these crystals exhibit linear current-voltage characteristics in fields greater than 1 Tesla.

T.R. Lemberger, The Ohio State University - Measurements of the magnitude and temperature dependence of the magnetic penetration depth in optimally-doped LSCO films have been shown to be consistent with a d-wave order parameter.
P. Bauman and D. Phillips, Purdue University - The first mathematically complete treatments have been achieved for nucleation to the superconducting state in two- and three-dimensional objects.

G.F. Giuliani, Purdue University - The former prediction of a universal behavior for the magnetic field dependence of the critical current in long Josephson junctions has now been experimentally verified.

P.F. Micelli, University of Missouri-Columbia - A technique has been developed that permits measuring the London penetration length, \(\lambda \), directly in YBCO using polarized neutron reflectivity.

J. Betanabhatla, University of Nebraska-Omaha; J.R. Hardy, University of Nebraska-Lincoln; and R.R. Berliner, University of Missouri-Columbia - Evidence has been found for the first time for a superconductivity transition around 12K in the Sr-Bi-O system, specifically in the compound \((\text{Sr}_{1-x}\text{K}_x)\text{Bi}_2\text{O}_y\) with \(x\geq0.12\).

P.J. McGinn, University of Notre Dame - Significant vortex pinning can be achieved in YBCO by doping with discrete amounts of Ce (as CeO\(_2\) or BaCeO\(_3\)) and MgO.

K.P. Trumble, K.J. Bowman and M.W. McElfresh, Purdue University - Particle orientation has been observed to affect the grain growth and sintering rates for BSCCO-2223, suggesting a direct link between orientation, sinterability, and grain growth for 2223 powder compacts.

W.B. Yelon, University of Missouri-Columbia - Improvements in counting statistics and the small sample geometries accommodated in the MURR diffractometer permit the neutron diffraction studies of high-temperature superconductors containing rare earths with high neutron cross sections in a reasonable amount of time (such as Gadolinium- and Europium-based compounds which have been hitherto not considered possible).

M.W. McElfresh and E.P. Kvam, Purdue University - Off-axis deposition coupled with the use of a barricade has been shown effective for producing smooth, particulate-free films by pulsed laser deposition.
APPENDIX II
Research Title, Principal Investigators, and University

1990

"Crystallization Of High Temperature Superconducting Filaments"
Alan I. Goldman, Douglas K. Finnemore, L. Scott Chumbley
Iowa State University

"Crystallization of REBa$_2$Cu$_3$O$_7$ High Temperature Superconducting Materials from the Solidified Melt"
R. W. McCallum, L. S. Chumbley, M. J. Kramer
Iowa State University

"Critical Current Density in Textured YBa$_2$Cu$_3$O$_{6+x}$ and Related Compounds"
Paul J. McGinn
University of Notre Dame

"Study of Compositional Modulation in High-Temperature Superconductor Structures and its Influence on Their Superconducting Properties"
K. M. Choudhary and S. T. Ruggiero
University of Notre Dame

"High T$_c$ Superconducting Composites/Films"
James C. Garland
The Ohio State University

"Normal, Magnetic and Superconducting Properties of La$_{1-x}$Sr$_x$NiO$_{4+\delta}$ and La$_{2-x}$SrCu$_{1.7}$Ni$_2$O$_4$ Systems, and Real Space Paring in High-T$_c$ Systems"
J. M. Honig and J. Spalek
Purdue University

"Study of Naturally Modulated High T$_c$ Superconducting Compounds"
Hiroshi Sato
Purdue University

"Thermally Activated Flux Motion in High-Temperature Superconductors"
John R. Clem and Vladimir G. Kogan
Iowa State University

"Experimental Study of Transport in Y$_1$Ba$_2$Cu$_3$O$_{7-\delta}$ and Y$_2$Ba$_4$Cu$_6$O$_{13}$ Films"
Thomas R. Lemberger
The Ohio State University

"Superconductors in Strong Magnetic Fields"
A. H. MacDonald and S. M. Girvin
Indiana University

"Microwave Dissipation in High-Temperature Superconductors: Flux-Lattice Dynamics, Crystal Anisotropy and Flux Pinning"
W. J. Tomasz and H. A. Blackstead
University of Notre Dame
"Intrinsic and Induced Weak Link Behavior in YBa$_2$Cu$_3$O$_{7.8}$ Films"
M. W. McElfresh and R. Reifenberger
Purdue University

"Dynamical Properties of Josephson-coupled Systems: Application to High-Temperature Superconductors"
David G. Stroud
The Ohio State University

"Neutron Diffraction and Defect Studies of High T$_c$ Superconductors"
William B. Yelon and John W. Farmer
University of Missouri-Columbia

1991
"Crystallization Of High Temperature Superconducting Filaments"
Alan I. Goldman, Douglas K. Finnemore, L. Scott Chumbley
Iowa State University

"Crystallization of REBa$_2$Cu$_3$O$_7$, High Temperature Superconducting Materials from the Solidified Melt"
R. W. McCallum, L. S. Chumbley, M. J. Kramer
Iowa State University

"Microstructural Dependence of Critical Current Density in Textured YBa$_2$Cu$_3$O$_{6+\delta}$ Superconductors"
Paul J. McGinn
University of Notre Dame

"Study of Compositional Modulation in High-Temperature Superconductor Structures and its Influence on Their Superconducting Properties"
K. M. Choudhary and S. T. Ruggiero
University of Notre Dame

"High T$_c$ Superconducting Composites/Films"
James C. Garland
The Ohio State University

"Normal Properties, Magnetism, and Onset of Superconductivity in La$_{1-x}$Sr$_x$NiO$_{4+\delta}$ and La$_2$SrCu$_{1.9}$NiO$_4$ Systems, and Real Space Paring in High-T$_c$ Systems"
J. M. Honig and J. Spalek
Purdue University

"Study of Naturally Modulated High T$_c$ Superconducting Compounds"
Hiroshi Sato
Purdue University

"Quantum Effects in Quasi-Two-Dimensional Superconductors"
A. H. MacDonald and S. M. Girvin
Indiana University

"Thermally Activated Flux Motion in High-Temperature Superconductors"
John R. Clem and Vladimir G. Kogan
Iowa State University
"Microwave Dissipation in High-Temperature Superconductors: Flux-Lattice Dynamics, Crystal Anisotropy, and Flux Pinning"
H. A. Blackstead
University of Notre Dame

"Far Infrared and Microwave Magneto-Dissipation in High T_c Superconductors"
W. J. Tomasch and J. K. Furdyna
University of Notre Dame

"Measurement of the Bernoulli Potential in Y_{1}Ba_{2}Cu_{3}O_{7-δ} and Y_{1}Ba_{2}Cu_{4}O_{x} Films"
Thomas R. Lemberger
The Ohio State University

"Neutron Diffraction and Defect Studies of High T_c Superconductors"
W. B. Yelon and J. W. Farmer
University of Missouri-Columbia

"Intrinsic and Induced Weak Link Behavior in YBa_{2}Cu_{3}O_{7-δ} Films"
M. W. McElfresh and R. Reifenberger
Purdue University

"Dynamical Properties of Josephson-coupled Systems: Application to High-Temperature Superconductors"
David G. Stroud
The Ohio State University

1992

"Low Temperature Routes to Processing Superconducting Materials: Phase Relations, Reactions, Synthesis and Processing"
David V. Baxter, Kenneth G. Caulton, and Malcolm H. Chisholm
Indiana University

"Crystallization Of High Temperature Superconducting Filaments"
Alan I. Goldman, Douglas K. Finnemore, L. Scott Chumbley
Iowa State University

"Crystallization of REBa_{2}Cu_{3}O_{7} High Temperature Superconducting Materials from the Solidified Melt"
R. W. McCallum, L. S. Chumbley, M. J. Kramer
Iowa State University

"Improved Synthetic Techniques for High-T_{c} Superconductors with Deliberate Additions of a Second Phase"
Patrick K. Gallagher
The Ohio State University

"Microstructural Dependence of Critical Current Density in Textured YBa_{2}Cu_{3}O_{6+δ} Superconductors"
Paul J. McGinn
University of Notre Dame
"Processing of Textured Superconducting Oxide/Noble Metal Microlaminates"
Ken H. Sandhage, The Ohio State University and
P. J. McGinn, University of Notre Dame

"Anisotropic Grain Growth and Isothermal Grain Alignment of Bulk, Superconducting Oxides"
Ken H. Sandhage
The Ohio State University

"Processing and Texture Development of Films from Metallo-Organic Precursors"
G. L. Liedl and Arden L. Bement, Jr.
Purdue University

"High Temperature Superconducting Tubes for Magnetic Shielding Applications"
K. P. Trumble, M. W. McElfresh, and K. J. Bowman
Purdue University

"Study of Compositional Modulation in High-Temperature Superconductor Structures and its Influence on Their Superconducting Properties"
K. M. Choudhary and S. T. Ruggiero
University of Notre Dame

"High T_c Superconducting Composites/Films"
James C. Garland
The Ohio State University

"Superconducting Characteristics of La$_{2-x}$SrCu$_{1-x}$Ni$_x$O$_4$ Systems: Effect of Substitutions on the Stability of the Superconducting Phase"
J. M. Honig and J. Spalek
Purdue University

"Study of Naturally Modulated High T_c Superconducting Compounds"
Hiroshi Sato
Purdue University

"Microwave Dissipation in High-Temperature Superconductors: Flux-Lattice Dynamics, Crystal Anisotropy, and Flux Pinning"
H. A. Blackstead
University of Notre Dame

"Thermally Activated Flux Motion in High-Temperature Superconductors"
John R. Clem and Vladimir G. Kogan
Iowa State University

"Atomic Beam Studies of Vortex Lattices at Superconductor Surfaces"
Gregory Lafyatis and Thomas Lemberger
The Ohio State University

"Measurement of the Bernoulli Potential and Surface-Charging Effects in Oxide Superconducting Films"
Thomas R. Lemberger
The Ohio State University
"Quantum Effects in Quasi-Two-Dimensional Superconductors"
A. H. MacDonald and S. M. Girvin
Indiana University

"Far Infrared and Microwave Magneto-Dissipation in High Tc Superconductors"
W. J. Tomasz and J. K. Furdyna
University of Notre Dame

"Transport Properties of High Tc Superconductors"
G. F. Giuliani
Purdue University

"NMR Studies of Vortex Dynamics in High Tc Superconductors"
Charles Pennington
The Ohio State University

"Dynamical Properties of Josephson-coupled Systems: Application to High-Temperature Superconductors"
David G. Stroud
The Ohio State University

"Electrical and Optical Investigations of Pristine and Doped YBa2Cu4O8"
Meera Chandrasekhar
University of Missouri-Columbia

"Neutron Diffraction and Defect Studies of High Tc Superconductors"
W. B. Yelon and J. W. Farmer
University of Missouri-Columbia

"Structural Defects and Interfaces in YBa2Cu3O7-δ Films"
Eric P. Kvam
Purdue University

"Intrinsic and Induced Weak Link Behavior in YBa2Cu3O7-δ Films"
M. W. McElfresh and R. Reifenberger
Purdue University

1993
"Low Temperature Routes to Processing of High-Temperature Superconductors"
David V. Baxter, Kenneth G. Caulton, and Malcolm H. Chisholm
Indiana University

"Study of Compositional Modulation in High-Tc Superconductor Structures and Its Influence on their Superconducting Properties"
K. M. Choudhary and S. T. Ruggiero
University of Notre Dame

"Microstructural Dependence of Critical Current Density in Textured YBa2Cu3O6+x Superconductors"
Paul J. McGinn
University of Notre Dame
"Growth of Single Crystals and/or Textured Specimens of High-Tc Superconductors using Oxygen Seeding"
Patrick K. Gallagher
The Ohio State University

"Processing of Textured Superconducting Oxide/Noble Metal Microlaminates"
Ken H. Sandhage, The Ohio State University and
P. J. McGinn, University of Notre Dame

"Anisotropic Grain Growth and Isothermal Grain Alignment of Bulk, Superconducting Oxides"
Ken H. Sandhage
The Ohio State University

"Pair Breaking Phenomena in the La2-xSrCu1-xNiO4 Systems: Experiment and Theory"
J. M. Honig and J. Spalek
Purdue University

"Processing and Texture Development of Films for Metallo-organic Precursors"
Gerald L. Liedl and Arden L. Bement, Jr.
Purdue University

"High Temperature Superconducting Tubes for Magnetic Shielding Applications"
K. P. Trumble, M. W. McElfresh, and K. J. Bowman
Purdue University

"Study of Naturally Modulated High Tc Superconducting Compounds"
Hiroshi Sato
Purdue University

"Quantum and Statistical Mechanics of High Tc Superconductors and Flux Line Liquids"
A. H. MacDonald and S. M. Girvin
Indiana University

"Thermally Activated Flux Motion in High-Temperature Superconductors"
John R. Clem and Vladimir G. Kogan
Iowa State University

"Electrical and Optical Investigations of Pristine and Doped YBa2Cu3O6"
Meera Chandrasekhar
University of Missouri-Columbia

"Neutron Diffraction and Defect Studies of High Tc Superconductors"
W. B. Yelon and J. W. Farmer
University of Missouri-Columbia

"Microwave and Optical Studies of High-Temperature Superconductors: Flux-Lattice Dynamics, Crystal Anisotropy, Flux Pinning and Photo-Modulated Superconductivity"
H. A. Blackstead
University of Notre Dame
"Superconducting Quantum Structures"
A. E. Miller, B. Das, S. Bandyopadhyay
University of Notre Dame

"Transport Properties of YBCO Thin Films"
S. T. Ruggiero
University of Notre Dame

"Far Infrared and Microwave Magneto-Dissipation in High Tc Superconductors"
W. J. Tomasch and J. K. Furdyna
University of Notre Dame

"High Tc Superconducting Composites/Films"
James C. Garland
The Ohio State University

"Atomic Beam Studies of Vortex Lattices at Superconductor Surfaces"
Gregory Laflayatis and Thomas Lemberger
The Ohio State University

"Device-related Properties of Doped YBa2(Cu1-xMx)3O7-δ Films"
Thomas R. Lemberger
The Ohio State University

"NMR Studies of Vortex Dynamics in High Tc Superconductors"
Charles Pennington
The Ohio State University

"Dynamical Properties of Josephson-coupled Systems: Application to High-Temperature Superconductors"
David G. Stroud
The Ohio State University

"Transport Properties of High Tc Superconductors"
G. F. Giuliani
Purdue University

"Structural Defects and Interfaces in YBa2Cu3O7-δ Films"
Eric P. Kvam
Purdue University

"Intrinsic and Induced Weak Link Behavior in YBa2Cu3O7-δ Films"
M. W. McElfresh and R. Reifenberger
Purdue University

"Vortices in Anisotropic Superconductors"
Paul Mwikar
Purdue University
1994

"Low Temperature Routes to Processing of High-Temperature Superconductors"
David V. Baxter, Kenneth G. Caulton, and Malcolm H. Chisholm
Indiana University

"Investigation of Structure and Superconducting Properties Relationship in Copper-free Bismuth Oxides"
J. Betanabhatla, University of Nebraska-Omaha, J. R. Hardy, University of Nebraska-Lincoln, and R. R. Berliner, University of Missouri-Columbia

"Microstructural Dependence of Critical Current Density in Textured YBa2Cu3O6+x Superconductors"
Paul J. McGinn
University of Notre Dame

"Growth of Single Crystals and/or Textured Specimens of High-Tc Superconductors using Oxygen Seeding"
Patrick K. Gallagher
The Ohio State University

"Processing of Textured Superconducting Oxide/Noble Metal Microlaminates"
Ken H. Sandhage, The Ohio State University and P. J. McGinn, University of Notre Dame

"Anisotropic Grain Growth and Isothermal Grain Alignment of Bulk, Superconducting Oxides"
Ken H. Sandhage
The Ohio State University

"The Influence of Oxygen Pressure and Temperature on Oxygen Stoichiometry and Phase Equilibria in the System Bi-Sr-Ca-Cu-O"
D. R. Gaskell
Purdue University

"Effect of Substitutions on Superconducting Properties of High Tc Materials"
J. M. Honig and J. Spalek
Purdue University

Processing and Texture Development of Films for Metallo-organic Precursors"
Gerald L. Liedl and Arden L. Bement, Jr.
Purdue University

"High Temperature Superconducting Tubes for Magnetic Shielding Applications"
K. P. Trumble, M. W. McElfresh, and K. J. Bowman
Purdue University

"Quantum and Statistical Mechanics of High Tc Superconductors and Flux Line Liquids"
A. H. MacDonald and S. M. Girvin
Indiana University

"Electrical and Optical Investigations of Pristine and Doped YBa2Cu4O8"
Meera Chandrasekhar
University of Missouri-Columbia

36
"Polarized Neutron Reflectivity Studies of High Temperature Superconductors"
P. F. Miceli
University of Missouri-Columbia

"Neutron Diffraction and Defect Studies of High Tc Superconductors"
W. B. Yelon and J. W. Farmer
University of Missouri-Columbia

"Microwave and Optical Studies of High-Temperature Superconductors: Flux-Lattice Dynamics, Crystal Anisotropy, Flux Pinning and Photo-Modulated Superconductivity"
H. A. Blackstead
University of Notre Dame

"Superconducting Quantum Structures"
A. E. Miller, and S. Bandyopadhyay
University of Notre Dame

"Transport Properties of YBCO Thin Films"
S. T. Ruggiero
University of Notre Dame

"High Tc Superconducting Composites/Films"
James C. Garland
The Ohio State University

"Atomic Beam Studies of Vortex Lattices at Superconductor Surfaces"
Gregory Lafiatis and Thomas Lemberger
The Ohio State University

"Device-related Properties of Doped YBa2(Cu1-xMx)3O7.5 Films"
Thomas R. Lemberger
The Ohio State University

"NMR Studies of Vortex Dynamics in High Tc Superconductors"
Charles Pennington
The Ohio State University

"Dynamical Properties of Josephson-coupled Systems: Application to High-Temperature Superconductors"
David G. Stroud
The Ohio State University

"Transport Properties of High Tc Superconductors"
G. F. Giuliani
Purdue University

"Structural Defects and Interfaces in YBa2Cu3O7.5 Films"
Eric P. Kvam
Purdue University

"Intrinsic and Induced Weak Link Behavior in YBa2Cu3O7.5 Films"
M. W. McElfresh and R. Reifenberger
Purdue University
"Study of Vortex Dynamics and Flux Pinning on Different Length Scales"
M. McElfresh and E. Kvam
Purdue University

"Vortices in Anisotropic Superconductors"
Paul Muzikar
Purdue University

1995

"Low Temperature Routes to Processing of High-Temperature Superconductors"
David V. Baxter, Kenneth G. Caulton, and Malcolm H. Chisholm
Indiana University

"Optical Studies of New -123 and -124 Materials"
Meera Chandrasekhar
University of Missouri-Columbia

"Hg- and Tl-Based Superconducting Films"
S. Liou
University of Nebraska-Lincoln

"Investigation of Structure and Superconducting Properties Relationship in Copper-free Bismuth Oxides"
J. Betanabhatla, University of Nebraska-Omaha, J. R. Hardy, University of Nebraska-Lincoln, and R. R. Berliner, University of Missouri-Columbia

"Microstructural Dependence of Critical Current Density in Textured YBa2Cu3O6+x Superconductors"
Paul J. McGinn
University of Notre Dame

"Processing of Textured Superconducting Oxide/Noble Metal Microlaminates"
Ken H. Sandhage, The Ohio State University and
P. J. McGinn, University of Notre Dame

"Anisotropic Grain Growth and Isothermal Grain Alignment of Bulk, Superconducting Oxides"
Ken H. Sandhage
The Ohio State University

"The Influence of Oxygen Pressure and Temperature on Oxygen Stoichiometry and Phase Equilibria in the System Bi-Sr-Ca-Cu-O"
D. R. Gaskell
Purdue University

"Effect of Substitutions on Superconducting Properties of High Tc Materials"
J. M. Honig and J. Spalek
Purdue University

Processing and Texture Development of Films for Metallo-organic Precursors"
Gerald L. Liedl and Arden L. Bement, Jr.
Purdue University
"Structural Defects and Interfaces in High Tc Superconducting Compounds"
E. P. Kvam
Purdue University

"High Temperature Superconducting Tubes for Magnetic Shielding Applications"
K. P. Trumble, M. W. McElfresh, and K. J. Bowman
Purdue University

"Quantum and Statistical Mechanics of High Tc Superconductors and Flux Line Liquids"
A. H. MacDonald and S. M. Girvin
Indiana University

"Polarized Neutron Reflectivity Studies of High Temperature Superconductors"
P. F. Miceli
University of Missouri-Columbia

"Neutron Diffraction and Defect Studies of High Tc Superconductors"
W. B. Yelon and J. W. Farmer
University of Missouri-Columbia

"Microwave and Optical Studies of High-Temperature Superconductors: Flux-Lattice
Dynamics, Crystal Anisotropy, Flux Pinning and Photo-Modulated Superconductivity"
H. A. Blackstead
University of Notre Dame

"Superconducting Quantum Structures"
A. E. Miller, and S. Bandyopadhyay
University of Notre Dame

"Transport Properties of YBCO Thin Films"
S. T. Ruggiero
University of Notre Dame

"High Tc Superconducting Composites/Films"
James C. Garland
The Ohio State University

"Atomic Beam Studies of Vortex Lattices at Superconductor Surfaces"
Gregory Laityatis
The Ohio State University

"Device-related Properties of Doped YBa2(Cu1-xMx)3O7-δ Films"
Thomas R. Lemberger
The Ohio State University

"NMR Studies of Vortex Dynamics in High Tc Superconductors"
Charles Pennington
The Ohio State University

"Dynamical Properties of Josephson-coupled Systems: Application to High-Temperature
Superconductors"
David G. Stroud
The Ohio State University
"Transport Properties of High Tc Superconductors"
G. F. Giuliani
Purdue University

"Study of Vortex Dynamics and Flux Pinning on Different Length Scales"
M. McElfresh and E. Kvam
Purdue University

"Vortices in Anisotropic Superconductors"
Paul Muzikar
Purdue University

1996

"Low Temperature Routes to Processing of High-Temperature Superconductors"
David V. Baxter, Kenneth G. Caulton, and Malcolm H. Chisholm
Indiana University

"Optical Studies of New -123 and -124 Materials"
Meera Chandrasekhar
University of Missouri-Columbia

"Flux Pinning and Defects Studies in High Tc Superconductors"
J. Farmer
University of Missouri-Columbia

"Hg- and Tl-Based Superconducting Films"
S. Liou
University of Nebraska-Lincoln

"Investigation of Structure and Superconducting Properties Relationship in Copper-free Bismuth Oxides"
J. Betanabhatla, University of Nebraska-Omaha, J. R. Hardy, University of Nebraska-Lincoln, and R. R. Berliner, University of Missouri-Columbia

"Microstructural Dependence of Critical Current Density in Textured YBa2Cu3O6+δ Superconductors"
Paul J. McGinn
University of Notre Dame

"Processing of Textured Superconducting Oxide/Noble Metal Microlaminates"
Ken H. Sandhage, The Ohio State University and
P. J. McGinn, University of Notre Dame

"Anisotropic Grain Growth and Isothermal Grain Alignment of Bulk, Superconducting Oxides"
Ken H. Sandhage
The Ohio State University
"The Influence of Oxygen Pressure and Temperature on Oxygen Stoichiometry and Phase Equilibria in the System Bi-Sr-Ca-Cu-O"
D. R. Gaskell
Purdue University

Processing and Texture Development of Films for Metallo-organic Precursors"
Gerald L. Liedl and Arden L. Bement, Jr.
Purdue University

"Structural Defects and Interfaces in High Tc Superconducting Compounds"
E. P. Kvam
Purdue University

"High Temperature Superconducting Tubes for Magnetic Shielding Applications"
K. P. Trumble, M. W. McElfresh, and K. J. Bowman
Purdue University

"Quantum and Statistical Mechanics of High Tc Superconductors and Flux Line Liquids"
A. H. MacDonald and S. M. Girvin
Indiana University

"Polarized Neutron Reflectivity Studies of High Temperature Superconductors"
P. F. Miceli
University of Missouri-Columbia

"Neutron Diffraction and Defect Studies of High Tc Superconductors"
W. B. Yelon
University of Missouri-Columbia

"Microwave and Optical Studies of High-Temperature Superconductors"
H. A. Blackstead
University of Notre Dame

"Superconducting Quantum Structures"
A. E. Miller, and S. Bandyopadhyay
University of Notre Dame

"Transport Properties of YBCO Thin Films"
S. T. Ruggiero
University of Notre Dame

"High T, Superconducting Composites/Films"
James C. Garland
The Ohio State University

"Atomic Beam Studies of Vortex Lattices at Superconductor Surfaces"
Gregory Lafyatis
The Ohio State University

"Device-related Properties of Doped YBa2(Cu1-xMx)3O7-δ Films"
Thomas R. Lemberger
The Ohio State University
"NMR Studies of Vortex Dynamics in High T_c Superconductors"
Charles Pennington
The Ohio State University

"Dynamical Properties of Josephson-coupled Systems: Application to High-Temperature Superconductors"
David G. Stroud
The Ohio State University

"Transport Properties of High T_c Superconductors"
G. F. Giuliani
Purdue University

"Study of Vortex Dynamics and Flux Pinning on Different Length Scales"
M. McElfresh and E. Kvam
Purdue University

"Vortices in Anisotropic Superconductors"
Paul Muzikar
Purdue University

1997

"Low Temperature Routes to Processing of High-Temperature Superconductors"
David V. Baxter, Kenneth G. Caulton, and Malcolm H. Chisholm
Indiana University

"Optical Studies of New -123 and -124 Materials"
Meera Chandrasekhar
University of Missouri-Columbia

"Flux Pinning and Defects Studies in High T_c Superconductors"
J. Farmer
University of Missouri-Columbia

"Mesoscopic High-T_c Superconductivity"
S. Bandyopadhyay
University of Nebraska-Lincoln

"Hg- and Tl-Based Superconducting Films"
S. Liou
University of Nebraska-Lincoln

"Investigation of Structure and Superconducting Properties Relationship in Copper-free Bismuth Oxides"
J. Betanabhatla, University of Nebraska-Omaha, J. R. Hardy, University of Nebraska-Lincoln, and R. R. Berliner, University of Missouri-Columbia

"Microstructural Dependence of Critical Current Density in Textured $YBa_2Cu_3O_{6+x}$ Superconductors"
Paul J. McGinn
University of Notre Dame

42
"Processing of Textured Superconducting Oxide/Noble Metal Microlaminates"
Ken H. Sandhage, The Ohio State University and
P. J. McGinn, University of Notre Dame

"Anisotropic Grain Growth and Isothermal Grain Alignment of Bulk, Superconducting Oxides"
Ken H. Sandhage
The Ohio State University

"The Influence of Oxygen Pressure and Temperature on Oxygen Stoichiometry and Phase Equilibria in the System Bi-Sr-Ca-Cu-O"
D. R. Gaskell
Purdue University

Processing and Texture Development of Films for Metallo-organic Precursors"
Gerald L. Liedl and Arden L. Bement, Jr.
Purdue University

"Structural Defects and Interfaces in High Tc Superconducting Compounds"
E. P. Kvam
Purdue University

"High Temperature Superconducting Tubes for Magnetic Shielding Applications"
K. P. Trumble, M. W. McElfresh, and K. J. Bowman
Purdue University

"Statistical Mechanics of High Tc Superconductors and Flux Line Liquids"
A. H. MacDonald and S. M. Girvin
Indiana University

"Polarized Neutron Reflectivity Studies of High Temperature Superconductors"
P. F. Miceli
University of Missouri-Columbia

"Neutron Diffraction and Defect Studies of High Tc Superconductors"
W. B. Yelon
University of Missouri-Columbia

"Microwave and Optical Studies of High-Temperature Superconductors"
H. A. Blackstead
University of Notre Dame

"Superconducting Quantum Structures"
A. E. Miller
University of Notre Dame

"Transport Properties of YBCO Thin Films"
S. T. Ruggiero
University of Notre Dame

"High Tc Superconducting Composites/Films"
James C. Garland
The Ohio State University
"Device-related Properties of Doped YBa2(Cu1-xMx)3O7.3 Films"
Thomas R. Lemberger
The Ohio State University

"NMR Studies of Vortex Dynamics in High Tc Superconductors"
Charles Pennington
The Ohio State University

"Dynamical Properties of Josephson-coupled Systems: Application to High-Temperature Superconductors"
David G. Stroud
The Ohio State University

"Effects of ac Magnetic Fields on Superconducting ac Currents: Moving Toward an Understanding of Three-Phase Electrical Power Transmission Using Superconductors"
P. Bauman and D. Phillips
Purdue University

"Transport Properties of High Tc Superconductors"
G. F. Giuliani
Purdue University

"Study of Vortex Dynamics and Flux Pinning on Different Length Scales"
M. McElfresh and E. Kvam
Purdue University

"Vortices in Anisotropic Superconductors"
Paul Muzikar
Purdue University

1998

"Low Temperature Routes to Processing of High-Temperature Superconductors"
David V. Baxter, Kenneth G. Caulton, and Malcolm H. Chisholm
Indiana University

"Optical Studies of New -123 and -124 Materials"
Meera Chandrasekhar
University of Missouri-Columbia

"Flux Pinning and Defects Studies in High Tc Superconductors"
J. Farmer
University of Missouri-Columbia

"Mesoscopic High-Tc Superconductivity"
S. Bandyopadhyay
University of Nebraska-Lincoln

"Hg- and Tl-Based Superconducting Films"
S. Liou
University of Nebraska-Lincoln
"Investigation of Structure and Superconducting Properties Relationship in Copper-free Bismuth Oxides"
J. Betanabhatla, University of Nebraska-Omaha, J. R. Hardy, University of Nebraska-Lincoln, and R. R. Berliner, University of Missouri-Columbia

"Microstructural Dependence of Critical Current Density in Textured YBa$_2$Cu$_3$O$_{6-x}$ Superconductors"
Paul J. McGinn
University of Notre Dame

"Processing of Textured Superconducting Oxide/Noble Metal Microlaminates"
Ken H. Sandhage, The Ohio State University and
P. J. McGinn, University of Notre Dame

"Anisotropic Grain Growth and Isothermal Grain Alignment of Bulk, Superconducting Oxides"
Ken H. Sandhage
The Ohio State University

Processing and Texture Development of Films for Metallo-organic Precursors
Gerald L. Liedl and Arden L. Bement, Jr.
Purdue University

"Structural Defects and Interfaces in High Tc Superconducting Compounds"
E. P. Kvam
Purdue University

"Statistical Mechanics of High Tc Superconductors and Flux Line Liquids"
A. H. MacDonald and S. M. Girvin
Indiana University

"Polarized Neutron Reflectivity Studies of High Temperature Superconductors"
P. F. Miceli
University of Missouri-Columbia

"Transport Properties of YBCO Thin Films"
S. T. Ruggiero
University of Notre Dame

"Device-related Properties of Doped YBa$_2$(Cu$_{1-x}$Mx)$_3$O$_{7-8}$ Films"
Thomas R. Lemberger
The Ohio State University

"NMR Studies of Vortex Dynamics in High Tc Superconductors"
Charles Pennington
The Ohio State University

"Dynamical Properties of Josephson-coupled Systems: Application to High-Temperature Superconductors"
David G. Stroud
The Ohio State University
"Study of Vortex Dynamics and Flux Pinning on Different Length Scales"
M. McElfresh and E. Kvam
Purdue University
APPENDIX III
Principal Investigators, Funding Received, and Capital Equipment Awards

<table>
<thead>
<tr>
<th>PI</th>
<th>Total Funding Rec’d</th>
<th>Funding Period</th>
<th>Equip Awards</th>
</tr>
</thead>
<tbody>
<tr>
<td>John R. Clem and Vladimir G. Kogan</td>
<td>$324,694</td>
<td>90-93</td>
<td></td>
</tr>
<tr>
<td>Iowa State University</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Iowa State University | | | |

| R. W. McCallum, L. S. Chumbley, M. J. Kramer | $231,000 | 90-93 | |
| Iowa State University | | | |

| Indiana University | | | |

| A. H. MacDonald and S. M. Girvin | $770,280 | 90-2001 | $40,000 |
| Indiana University | | | |

| Meera Chandrasekhar | $451,312 | 92-2001 | $15,250 |
| University of Missouri-Columbia | | | |

| J. Farmer | $136,195 | 96-2001 | $19,400 |
| University of Missouri-Columbia | | | |

| P. F. Miceli | $429,700 | 94-2001 | $46,300 |
| University of Missouri-Columbia | | | |

| William B. Yelon and John W. Farmer | $683,939 | 90-2001 | $33,150 |
| University of Missouri-Columbia | | | |

| J. Betanabhatla, J. R. Hardy, and R. R. Berliner | $431,347 | 94-2001 | $40,000 |
| University of Nebraska-Omaha, University of Nebraska-Lincoln, and University of Missouri-Columbia | | | |

| S. Bandyopadhyay | $80,819 | 97-2001 | $43,000 |
| University of Nebraska-Lincoln | | | |
S. Liou
University of Nebraska-Lincoln
$374,600
94-2001
$43,000

H. A. Blackstead
University of Notre Dame
$756,000
91-2001
$71,307

K. M. Choudhary and S. T. Ruggiero
University of Notre Dame
$338,787
90-93
$7,500

Paul J. McGinn
University of Notre Dame
$1,022,791
90-2001
$96,500

A. E. Miller, B. Das, S. Bandyopadhyay
University of Notre Dame
$376,001
93-2001

S. T. Ruggiero
University of Notre Dame
$326,688
93-2001
$31,050

W. J. Tomasch and H. A. Blackstead
University of Notre Dame
$429,009
90-93
$15,011

Patrick K. Gallagher
The Ohio State University
$234,803
91-96

James Garland
The Ohio State University
$825,449
90-97
$140,125

Gregory Lafyatis and Thomas Lemberger
The Ohio State University
$427,247
91-97

Thomas R. Lemberger
The Ohio State University
$615,423
90-2001

Charles Pennington
The Ohio State University
$491,806
92-2001

Ken H. Sandhage, The Ohio State University
and P. J. McGinn, University of Notre Dame
$631,212
92-2001
<table>
<thead>
<tr>
<th>Name</th>
<th>Contribution</th>
<th>Years</th>
<th>Additional Funds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ken H. Sandhage</td>
<td>$766,651</td>
<td>91-2001</td>
<td>$74,050</td>
</tr>
<tr>
<td>The Ohio State University</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>David G. Stroud</td>
<td>$533,904</td>
<td>90-2001</td>
<td></td>
</tr>
<tr>
<td>The Ohio State University</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. Bauman and D. Phillips</td>
<td>$85,958</td>
<td>97-99</td>
<td></td>
</tr>
<tr>
<td>Purdue University</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. R. Gaskell</td>
<td>$319,950</td>
<td>94-99</td>
<td></td>
</tr>
<tr>
<td>Purdue University</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. F. Giuliani</td>
<td>$501,500</td>
<td>91-99</td>
<td>$14,150</td>
</tr>
<tr>
<td>Purdue University</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J. M. Honig and J. Spalek</td>
<td>$516,121</td>
<td>90-99</td>
<td></td>
</tr>
<tr>
<td>Purdue University</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eric P. Kvam</td>
<td>$1,254,561</td>
<td>90-2001</td>
<td>$15,000</td>
</tr>
<tr>
<td>Purdue University</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. L. Liedl and A. Bement, Jr.</td>
<td>$889,643</td>
<td>90-2001</td>
<td></td>
</tr>
<tr>
<td>Purdue University</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. W. McElfresh and R. Reifenberger</td>
<td>$435,039</td>
<td>90-94</td>
<td></td>
</tr>
<tr>
<td>Purdue University</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. McElfresh and E. P. Kvam</td>
<td>$648,790</td>
<td>96-2001</td>
<td>$107,000</td>
</tr>
<tr>
<td>Purdue University</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paul Muzikar</td>
<td>$284,747</td>
<td>94-99</td>
<td></td>
</tr>
<tr>
<td>Purdue University</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hiroshi Sato</td>
<td>$450,731</td>
<td>90-93</td>
<td></td>
</tr>
<tr>
<td>Purdue University</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K. P. Trumble, M. W. McElfresh, and K. J. Bowman</td>
<td>$861,761</td>
<td>92-99</td>
<td>$37,500</td>
</tr>
<tr>
<td>Purdue University</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project</td>
<td>Students</td>
<td>Degree</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---------------------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>Low Temperature Routes to Processing of High-Temperature Superconductors</td>
<td>V. DiStasi</td>
<td>Ph.D.</td>
<td></td>
</tr>
<tr>
<td>Baxter/Caulton/Chisholm</td>
<td>C. Smotzer</td>
<td>M.S.</td>
<td></td>
</tr>
<tr>
<td>Indiana University</td>
<td>W. Chiang</td>
<td>Ph.D.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B. Borup</td>
<td>Ph.D.</td>
<td></td>
</tr>
<tr>
<td>Quantum Effects in Quasi-Two-Dimensional Superconductors</td>
<td>Min-Chul Cha</td>
<td>Ph.D.</td>
<td></td>
</tr>
<tr>
<td>MacDonald/Girvin</td>
<td>J. Hu</td>
<td>Ph.D.</td>
<td></td>
</tr>
<tr>
<td>Indiana University</td>
<td>K. Moon</td>
<td>Ph.D.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R. Hyman</td>
<td>Ph.D.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Y. Wang</td>
<td>Ph.D.</td>
<td></td>
</tr>
<tr>
<td>Optical Studies of New -123 and -124 Materials</td>
<td>D. J. Payne</td>
<td>Ph.D.</td>
<td></td>
</tr>
<tr>
<td>M. Chandrasekhar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of Missouri-Columbia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neutron Diffraction and Defect Studies of High T_c Superconductors</td>
<td>H. Xie</td>
<td>M.S.</td>
<td></td>
</tr>
<tr>
<td>Yelon/Farmer</td>
<td>X. Ding</td>
<td>Ph.D.</td>
<td></td>
</tr>
<tr>
<td>University of Missouri-Columbia</td>
<td>D. Bradford</td>
<td>Ph.D.</td>
<td></td>
</tr>
<tr>
<td>Hg- and Tl- Based Superconducting Films</td>
<td>H. Li</td>
<td>Ph.D.</td>
<td></td>
</tr>
<tr>
<td>S. H. Liou</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of Nebraska-Lincoln</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microstructural Dependence of Critical Current Density in Melt</td>
<td>D. Balkin</td>
<td>Ph.D.</td>
<td></td>
</tr>
<tr>
<td>Textured YBa2Cu3O6+δ Superconductors</td>
<td>S. Sengupta</td>
<td>Ph.D.</td>
<td></td>
</tr>
<tr>
<td>P.J. McGinn</td>
<td>V. Chakrpani</td>
<td>Ph.D.</td>
<td></td>
</tr>
<tr>
<td>University of Notre Dame</td>
<td>H. Yang</td>
<td>M.S.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H. Balwada</td>
<td>M.S.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S. Yeung</td>
<td>Ph.D.</td>
<td></td>
</tr>
<tr>
<td>Superconducting Quantum Structures</td>
<td>A. Balandin</td>
<td>Ph.D.</td>
<td></td>
</tr>
<tr>
<td>Miller/Bandyopadhyay</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of Notre Dame</td>
<td>E.K. Moser</td>
<td>Ph.D.</td>
<td></td>
</tr>
<tr>
<td>Far-Infrared and Microwave Magneto-Dissipation in High-</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Temperature Superconductors
Tomasch/Furdyna
University of Notre Dame

Growth of Single Crystals and/or Textured Specimens of High Tc Superconductors using Oxygen Seeding
P.K. Gallagher
The Ohio State University

High Tc Superconducting Composites, Arrays and Crystals
J. C. Garland
The Ohio State University

Atomic Beam Studies of Vortex Lattices at Superconductor Surfaces
G. P. Lefayatis
The Ohio State University

Device-related Properties of Doped YBa2(Cu13M6)xO7.5 Films
T. R. Lemberger
The Ohio State University

NMR Studies of Vortex Dynamics in High Tc Superconductors
C. Pennington
The Ohio State University

Processing of Textured Superconducting Oxide/Noble Metal Microlaminates
Sandhage/McGinn
The Ohio State University and University of Notre Dame

Anisotropic Grain Growth and Isothermal Grain Alignment of Bulk Superconducting Oxides
K. H. Sandhage
The Ohio State University

Dynamical Properties of Josephson-coupled Systems: Application to High-Temperature Superconductors
D. G. Stroud
The Ohio State University
<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effects of ac Magnetic Fields on Superconducting ac Currents:</td>
<td>M. Royer</td>
<td>Ph.D.</td>
</tr>
<tr>
<td>Moving Toward an Understanding of Three-Phase Electrical Power Transmission Using Superconductors</td>
<td>T. Giorgi</td>
<td>Ph.D.</td>
</tr>
<tr>
<td>Bauman/Phillips</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purdue University</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pair Breaking Phenomena in the La$_{2-x}$SrxCu${1-y}$Ni$_y$O$_4$ Systems</td>
<td>P. Metcalf</td>
<td>M.S.</td>
</tr>
<tr>
<td>Experiment and Theory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Honig/Spalek</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purdue University</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structural Defects and Interfaces in YBa$_2$Cu$_3$O$_7$</td>
<td>A. Zanota</td>
<td>M.S.</td>
</tr>
<tr>
<td>E. P. Kvam</td>
<td>V. R. Iyer</td>
<td>M.S.</td>
</tr>
<tr>
<td>Purdue University</td>
<td>D. Linehan</td>
<td>M.S.</td>
</tr>
<tr>
<td></td>
<td>R. Zhu</td>
<td>M.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processing and Texture Development in YBa$_2$Cu3O${7.5}$</td>
<td>C. Venkatramaan</td>
<td>Ph.D.</td>
</tr>
<tr>
<td>Films from Metallo-Organic Precursors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liedl/Bement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purdue University</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study of Vortex Dynamics and Flux Pinning on Different Length Scales</td>
<td>J. Deak</td>
<td>Ph.D.</td>
</tr>
<tr>
<td>McElfresh/Kvam</td>
<td>L. Hou</td>
<td>Ph.D.</td>
</tr>
<tr>
<td>Purdue University</td>
<td>S. Li</td>
<td>Ph.D.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intrinsic and Induced Weak Link Behavior in YBa$_2$Cu3O${7.5}$</td>
<td>T. G. Miller</td>
<td>Ph.D.</td>
</tr>
<tr>
<td>McElfresh/Reifenberger</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purdue University</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vortices in Anisotropic Superconductors</td>
<td>H. Kim</td>
<td>Ph.D.</td>
</tr>
<tr>
<td>P. Muzikar</td>
<td>G. Preosti</td>
<td>Ph.D.</td>
</tr>
<tr>
<td>Purdue University</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Temperature Superconducting Tubes for Magnetic Shielding Applications</td>
<td>D. Aldrich</td>
<td>B.S.E.</td>
</tr>
<tr>
<td>Trumble/Bowman/McElfresh</td>
<td>C. Peterson</td>
<td>B.S.E.</td>
</tr>
<tr>
<td>Purdue University</td>
<td>A. Trissler</td>
<td>B.S.E.</td>
</tr>
<tr>
<td></td>
<td>T. Brent</td>
<td>B.S.E.</td>
</tr>
<tr>
<td></td>
<td>N. Medendorp, Jr.</td>
<td>M.S.E.</td>
</tr>
<tr>
<td></td>
<td>G. Steinlage</td>
<td>Ph.D.</td>
</tr>
<tr>
<td></td>
<td>R. Moon</td>
<td>M.S.E.</td>
</tr>
</tbody>
</table>
APPENDIX V

Publications and Presentations

<table>
<thead>
<tr>
<th>PI</th>
<th>Publications</th>
<th>Presentations</th>
</tr>
</thead>
<tbody>
<tr>
<td>John R. Clem and Vladimir G. Kogan</td>
<td>29</td>
<td>62</td>
</tr>
<tr>
<td>Iowa State University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alan I. Goldman Douglas K. Finnemore, and L. Scott Chumbley</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>Iowa State University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R. W. McCallum, L. S. Chumbley, M. J. Kramer</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Iowa State University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>David V. Baxter, Kenneth G. Caulden, and Malcolm H. Chisholm</td>
<td>12</td>
<td>44</td>
</tr>
<tr>
<td>Indiana University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. H. MacDonald and S. M. Girvin</td>
<td>29</td>
<td>83</td>
</tr>
<tr>
<td>Indiana University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meera Chandrasekhar</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>University of Missouri-Columbia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J. Farmer</td>
<td>9</td>
<td>17</td>
</tr>
<tr>
<td>University of Missouri-Columbia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. F. Miceli</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>University of Missouri-Columbia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>William B. Yelon</td>
<td>21</td>
<td>27</td>
</tr>
<tr>
<td>University of Missouri-Columbia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J. Betanabhatla, University of Nebraska-Omaha, J. R. Hardy,</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>University of Nebraska-Lincoln, and R. R. Berliner, University of</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missouri-Columbia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Bandyopadhyay</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>University of Nebraska-Lincoln</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
S. Liou
University of Nebraska-Lincoln

H. A. Blackstead
University of Notre Dame

K. M. Choudhary
University of Notre Dame

Paul J. McGinn
University of Notre Dame

A. E. Miller, B. Das, S. Bandyopadhyay
University of Notre Dame

S. T. Ruggiero
University of Notre Dame

W. J. Tomasch
University of Notre Dame

P. K. Gallagher
The Ohio State University

James Garland
The Ohio State University

Gregory Lafyatis
The Ohio State University

Thomas R. Lemberger
The Ohio State University

Charles Pennington
The Ohio State University

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MISCON SUMMER SCHOOL

<table>
<thead>
<tr>
<th>Title</th>
<th>Location</th>
<th>Date</th>
<th>Chairmen</th>
<th>Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type-II Superconductors: Basic Properties, Measurements,</td>
<td>Univ. of Notre Dame</td>
<td>July 8-9/93</td>
<td>John Clem & Mike McElfresh</td>
<td>98</td>
</tr>
<tr>
<td>and Selected Advanced Topics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synthesis, Processing and Analysis of High Temperature Superconductors</td>
<td>Purdue University</td>
<td>August 11-12/94</td>
<td>Paul McGinn & Ken Sandhage</td>
<td>103</td>
</tr>
<tr>
<td>The Josephson Effect and Device Applications</td>
<td>Univ. of Missouri-</td>
<td>July 13-14/95</td>
<td>Jim Garland & Steve Ruggiero</td>
<td>77</td>
</tr>
<tr>
<td>Preparation and Properties of High Temperature Superconducting Thin Films</td>
<td>Univ. of Notre Dame</td>
<td>August 15-16/96</td>
<td>Mike McElfresh & Dave Baxter</td>
<td>89</td>
</tr>
<tr>
<td>Magnetic Vortices in Superconductors</td>
<td>Purdue University</td>
<td>July 24-25/97</td>
<td>Mike McElfresh & Tom Lemberger</td>
<td>95</td>
</tr>
<tr>
<td>Material Issues Related to Applications of High T<sub>c</sub> Superconductors</td>
<td>Univ. of Missouri-</td>
<td>July 30-31/98</td>
<td>Sy-Hwang Liou, Tom Lemberger & Ken Sandhage</td>
<td>59</td>
</tr>
</tbody>
</table>
Office of the Director

<table>
<thead>
<tr>
<th>Name</th>
<th>University/Affiliation</th>
<th>Participation Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. I. Schindler, Director</td>
<td>Purdue University</td>
<td>1990-91</td>
</tr>
<tr>
<td>G. L. Liedl, Acting Director</td>
<td>Purdue University</td>
<td>1991-92</td>
</tr>
<tr>
<td>Arden L. Bement, Jr., Director</td>
<td>Purdue University</td>
<td>1992-2001</td>
</tr>
<tr>
<td>Rebecca F. Herr, Assistant to the Director</td>
<td>Purdue University</td>
<td>1990-2001</td>
</tr>
</tbody>
</table>

Steering Committee Members

<table>
<thead>
<tr>
<th>Name</th>
<th>University/Affiliation</th>
<th>Participation Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenneth L. Kliwer</td>
<td>Purdue University</td>
<td>1990-92</td>
</tr>
<tr>
<td>Robert Greenkorn</td>
<td>Purdue University</td>
<td>1992-94</td>
</tr>
<tr>
<td>Luis Proenza</td>
<td>Purdue University</td>
<td>1994-2001</td>
</tr>
<tr>
<td>Thomas L. Sweeney</td>
<td>The Ohio State University</td>
<td>1990-92</td>
</tr>
<tr>
<td>Richard Stoddard</td>
<td>The Ohio State University</td>
<td>1992-2001</td>
</tr>
<tr>
<td>Nathan O. Hatch</td>
<td>University of Notre Dame</td>
<td>1990-96</td>
</tr>
<tr>
<td>James L. Merz</td>
<td>University of Notre Dame</td>
<td>1996-2001</td>
</tr>
<tr>
<td>Michael M. Crow</td>
<td>Iowa State University</td>
<td>1990-92</td>
</tr>
<tr>
<td>Stuart Hadley</td>
<td>Iowa State University</td>
<td>1992-93</td>
</tr>
<tr>
<td>Ronald J. Turner</td>
<td>University of Missouri</td>
<td>1990-96</td>
</tr>
<tr>
<td>Stephen Lehmkuhle</td>
<td>University of Missouri</td>
<td>1997-2001</td>
</tr>
<tr>
<td>James B. Milliken</td>
<td>University of Nebraska</td>
<td>1994-2001</td>
</tr>
<tr>
<td>Name</td>
<td>University/Affiliation</td>
<td>Participation Date</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Joseph A. Franklin</td>
<td>Indiana University</td>
<td>1990-94</td>
</tr>
<tr>
<td>George E. Walker</td>
<td>Indiana University</td>
<td>1994-1996</td>
</tr>
<tr>
<td>Program Committee Members</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malcolm Macfarlane</td>
<td>Indiana University</td>
<td>1996-2001</td>
</tr>
<tr>
<td>A. I. Schindler (ExOfficio Member)</td>
<td>Purdue University</td>
<td>1990-91</td>
</tr>
<tr>
<td>G. L. Liedl (ExOfficio Member)</td>
<td>Purdue University</td>
<td>1991-99</td>
</tr>
<tr>
<td>Arden L. Bement, Jr. (ExOfficio Member)</td>
<td>Purdue University</td>
<td>1992-2001</td>
</tr>
<tr>
<td>Newton Cattell (ExOfficio Member)</td>
<td>Midwestern University</td>
<td>1990-99</td>
</tr>
<tr>
<td>A. I. Schindler</td>
<td>Purdue University</td>
<td>1990-91</td>
</tr>
<tr>
<td>Gerald L. Liedl</td>
<td>Purdue University</td>
<td>1991-99</td>
</tr>
<tr>
<td>Arden L. Bement, Jr., Director</td>
<td>Purdue University</td>
<td>1992-2001</td>
</tr>
<tr>
<td>Michael McElfresh, Assistant Director</td>
<td>Purdue University</td>
<td>1992-99</td>
</tr>
<tr>
<td>Paul McGinn (Also Group I Leader)</td>
<td>Notre Dame University</td>
<td>1990-2001</td>
</tr>
<tr>
<td>John R. Clem (Also Group II Leader)</td>
<td>Iowa State University</td>
<td>1990-93</td>
</tr>
<tr>
<td>James Swihart</td>
<td>Indiana University</td>
<td>1990-92</td>
</tr>
<tr>
<td>David Baxter</td>
<td>Indiana University</td>
<td>1992-2001</td>
</tr>
<tr>
<td>Jurgen M. Honig</td>
<td>Purdue University</td>
<td>1990-2001</td>
</tr>
<tr>
<td>Wal-Yim Ching</td>
<td>University of Missouri</td>
<td>1990-92</td>
</tr>
<tr>
<td>Meera Chandrasekhar</td>
<td>University of Missouri</td>
<td>1992-2001</td>
</tr>
<tr>
<td>James C. Garland</td>
<td>The Ohio State University</td>
<td>1990-95</td>
</tr>
<tr>
<td>Peer Reviewers</td>
<td>University/Affiliation</td>
<td>Participation Date</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--</td>
<td>--------------------</td>
</tr>
<tr>
<td>Thomas Lemberger</td>
<td>The Ohio State University</td>
<td>1995-2001</td>
</tr>
<tr>
<td>John Mundy DOE Program Manager</td>
<td>U.S. Dept. of Energy</td>
<td>1990-99</td>
</tr>
<tr>
<td>Malcolm Beasley</td>
<td>Stanford University</td>
<td>1990-92</td>
</tr>
<tr>
<td>Stuart Wolf</td>
<td>U.S. Naval Research Lab</td>
<td>1990-92</td>
</tr>
<tr>
<td>Sungho Jin</td>
<td>AT&T Bell Labs</td>
<td>1990-90</td>
</tr>
<tr>
<td>Martha Greenblatt</td>
<td>Rutgers University</td>
<td>1990-98</td>
</tr>
<tr>
<td>Arthur Sleight</td>
<td>Oregon State University</td>
<td>1991-98</td>
</tr>
<tr>
<td>A. I. Schindler</td>
<td>Retired</td>
<td>1992-94</td>
</tr>
<tr>
<td>Lev Gorkov</td>
<td>Florida State University</td>
<td>1993-98</td>
</tr>
<tr>
<td>John Goodenough</td>
<td>University of Texas at Austin</td>
<td>1993-98</td>
</tr>
<tr>
<td>James Eckstein</td>
<td>Ginzton Research Center</td>
<td>1993-94</td>
</tr>
<tr>
<td>Don Gubser</td>
<td>U.S. Naval Research Lab</td>
<td>1993-98</td>
</tr>
<tr>
<td>Theodore H. Geballe</td>
<td>Stanford University</td>
<td>1993-98</td>
</tr>
<tr>
<td>Aharon Kapitulnik</td>
<td>Stanford University</td>
<td>1993-98</td>
</tr>
<tr>
<td>John B. Vander Sande</td>
<td>MIT</td>
<td>1994-98</td>
</tr>
<tr>
<td>Brian Maple</td>
<td>University of California-San Diego</td>
<td>1995-98</td>
</tr>
<tr>
<td>Paul Grant</td>
<td>EPRI</td>
<td>1995-98</td>
</tr>
</tbody>
</table>
Advanced Technology Materials, Inc.
American Superconductor Corporation
AT&T Bell Labs
Bellcore
Conductus, Inc.
DuPont Superconductivity
HYPRES, Inc.
IBM Thomas J. Watson Research Center
Intermagnetics General Corporation
Jet Propulsion Laboratory
Keithley Instrument Company
Lake Shore Cryotronics, Inc.
Lucent Technologies
National Institute of Standards and Technology
Plastronics, Inc.
Quantum Magnetics/Quantum Design
Ribbon Technology Corporation
Superconductive Components, Inc.
TRW Superconductivity Research
Public Service Indiana
Weizmann Institute of Science
Wright Patterson AFB