Parameter-free effective field theory calculation for the solar proton-fusion and hep processes

PDF Version Also Available for Download.

Description

Spurred by the recent complete determination of the weak currents in two-nucleon systems up to {Omicron}(Q{sup 3}) in heavy-baryon chiral perturbation theory, we carry out a parameter-free calculation of the threshold S-factors for the solar pp (proton-fusion) and hep processes in an effective field theory that combines the merits of the standard nuclear physics method and systematic chiral expansion. The power of the EFT adopted here is that one can correlate in a unified formalism the weak-current matrix elements of two-, three- and four-nucleon systems. Using the tritium {beta}-decay rate as an input to fix the only unknown parameter in ... continued below

Physical Description

387 Kilobytes pages

Creation Information

Park, T.S.; Marcucci, L.E.; Schiavilla, R.; Viviani, M.; Kievsky, A.; Rosati, S. et al. August 1, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Spurred by the recent complete determination of the weak currents in two-nucleon systems up to {Omicron}(Q{sup 3}) in heavy-baryon chiral perturbation theory, we carry out a parameter-free calculation of the threshold S-factors for the solar pp (proton-fusion) and hep processes in an effective field theory that combines the merits of the standard nuclear physics method and systematic chiral expansion. The power of the EFT adopted here is that one can correlate in a unified formalism the weak-current matrix elements of two-, three- and four-nucleon systems. Using the tritium {beta}-decay rate as an input to fix the only unknown parameter in the theory, we can evaluate the threshold S factors with drastically improved precision; the results are S{sub pp}(0) = 3.94 x (1 {+-} 0.004) x 10{sup -25} MeV-b and S{sub hep}(0) = (8.6 {+-} 1.3) x 10{sup -20} keV-b. The dependence of the calculated S-factors on the momentum cutoff parameter {Lambda} has been examined for a physically reasonable range of {Lambda}. This dependence is found to be extremely small for the pp process, and to be within acceptable levels for the hep process, substantiating the consistency of our calculational scheme.

Physical Description

387 Kilobytes pages

Source

  • Other Information: No journal information given for this preprint

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: JLAB-THY-02-36
  • Report No.: nucl-th/0208055
  • Report No.: KIAS P02049
  • Report No.: Saclay T02/102
  • Grant Number: AC05-84ER40150
  • Office of Scientific & Technical Information Report Number: 801033
  • Archival Resource Key: ark:/67531/metadc742856

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 1, 2002

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • Feb. 5, 2016, 9:49 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Park, T.S.; Marcucci, L.E.; Schiavilla, R.; Viviani, M.; Kievsky, A.; Rosati, S. et al. Parameter-free effective field theory calculation for the solar proton-fusion and hep processes, article, August 1, 2002; Newport News, Virginia. (digital.library.unt.edu/ark:/67531/metadc742856/: accessed December 11, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.