Ultrasonic Velocities in Unconsolidated Sand/Clay Mixtures at Low Pressures

PDF Version Also Available for Download.

Description

Effective seismic interrogation of the near subsurface requires that measured parameters, such as compressional and shear velocities and attenuation, be related to important soil properties. Porosity, composition (clay content), fluid content and type are of particular interest. The ultrasonic (100-500 kHz) pulse transmission technique was used to collect data for highly attenuating materials appropriate to the vadose zone. Up to several meters of overburden were simulated by applying low uniaxial stress of 0 to about 0.1 MPa to the sample. The approach was to make baseline measurements for pure quartz sand, because the elastic properties are relatively well known except ... continued below

Physical Description

667 Kilobytes pages

Creation Information

Aracne-Ruddle, C.M.; Bonner, B.P.; Trombino, C.N.; Hardy, E.D.; Berge, P.A.; Boro, C.O. et al. October 15, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 17 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Effective seismic interrogation of the near subsurface requires that measured parameters, such as compressional and shear velocities and attenuation, be related to important soil properties. Porosity, composition (clay content), fluid content and type are of particular interest. The ultrasonic (100-500 kHz) pulse transmission technique was used to collect data for highly attenuating materials appropriate to the vadose zone. Up to several meters of overburden were simulated by applying low uniaxial stress of 0 to about 0.1 MPa to the sample. The approach was to make baseline measurements for pure quartz sand, because the elastic properties are relatively well known except at the lowest pressures. Clay was added to modify the sample microstructure and ultrasonic measurements were made to characterize the effect of the admixed second phase. Samples were fabricated from Ottawa sand mixed with a swelling clay (Wyoming bentonite). The amount of clay added was 1 to 40% by mass. Compressional (P) velocities are low (228-483 m/s), comparable to the sound velocity in air. Shear (S) velocities are about half of the compressional velocity (120-298 m/s), but show different sensitivity to microstructure. Adding clay increases the shear amplitude dramatically with respect to P, and also changes the sensitivity of the velocities to load. These experiments demonstrate that P and S velocities are sensitive to the amount of clay added, even at low concentrations. Other properties of the transmitted signals including the ratio of S and P amplitudes, velocity gradient with depth, and the frequency content of transmitted pulses, provide additional information about the clay content. Direct observation of sand-clay microstructure indicated that the clay particles electrostatically cling to the sand grains but do not form a coating. Instead, in the dry mixture clay particles tended to bridge the gaps between grains, influencing how stresses were carried across grain contacts. Because of this tendency to bridge the gaps, small amounts of clay can have large effects on the wave propagation.

Physical Description

667 Kilobytes pages

Source

  • American Geophysical Union 1999 Fall Meeting, San Francisco, CA (US), 12/13/1999--12/17/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JC-135621
  • Grant Number: W-7405-Eng-48
  • Office of Scientific & Technical Information Report Number: 792605
  • Archival Resource Key: ark:/67531/metadc742852

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 15, 1999

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • May 6, 2016, 2:08 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 17

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Aracne-Ruddle, C.M.; Bonner, B.P.; Trombino, C.N.; Hardy, E.D.; Berge, P.A.; Boro, C.O. et al. Ultrasonic Velocities in Unconsolidated Sand/Clay Mixtures at Low Pressures, article, October 15, 1999; California. (digital.library.unt.edu/ark:/67531/metadc742852/: accessed October 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.