FINAL REPORT
Submitted to the
Department of Energy
Office of Basic Energy Sciences
Investigating the Physical Basis of Biomineralization

P.I. Patricia M. Dove, Associate Professor
School of Earth and Atmospheric Sciences, Georgia Institute of Technology
Atlanta, Georgia 30332, (ph: 540.231.2444)
(email: dove@vt.edu)

I. Summary of Major Findings from Research Activities
During the three years of this project, Professor Dove's laboratory made tremendous progress in understanding fundamental controls on crystal growth in simple model systems for the complex phenomenon of biological mineralization. Our collaboration with J.J. DeYoreo was productive and we surpassed the goals set forth in the original proposal to establish a new quantitative understanding of carbonate mineral crystallization. The findings from this project have been widely recognized across the scientific community by the award of the Mineralogical Society of America best paper award in 1998 and the Best University Research Award of 1999 at the Basic Energy Sciences, Division of Geosciences “Interfacial Processes Symposium”. In addition, two students working on this project received six different awards for their research findings. The following publications have been released to date:

Publications to-date:

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Publications submitted or in advanced preparation:

Teng, H., P.M. Dove, and J.J. DeYoreo (near submission) Kinetic and thermodynamic impacts of aspartic acid on calcite crystallization. for *Journal of Crystal Growth.*

Theses and Dissertations Accepted:

Kevin Davis. M.S. Degree. *Magnesium as an impurity in calcite growth: Thermodynamic and kinetic controls on biomineral formation.* Georgia Institute of Technology. Completed May 2000 and is presently a Ph.D. student in my research group at Virginia Tech.

Extended abstracts and special conferences:

Conference Abstracts

Junior and Senior Scientists supported by this project:
Undergraduates: Ms. Bridget Bruton
 Ms. Micki Cook
Graduate Students: Ms. Meg Grantham
 Mr. Kevin Davis
 Dr. Henry Teng
 (now Assistant Professor at George Washington University)
Research Scientist: Mr. James Zhang
Assistant Professor: Ms. Meg Grantham
 Dr. Patricia Dove (now Associate)

Statement of funds that remained at the end of this project:
Our research activities expended all of the funds in this project.
Awards and Honors

<table>
<thead>
<tr>
<th>Patricia Dove</th>
<th>Geochemical Society, Clarke Medal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Georgia Institute of Technology</td>
</tr>
<tr>
<td></td>
<td>Spring 1998 Best University Research Award, DOE 'Interfacial Processes' Symposium</td>
</tr>
<tr>
<td>Fall 1998</td>
<td>Best Paper Award</td>
</tr>
<tr>
<td>Fall 2000</td>
<td>Elected Fellow</td>
</tr>
<tr>
<td></td>
<td>Mineralogical Society of America</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H. Henry Teng</th>
<th>Best Paper Award, Mineralogical Society of America</th>
</tr>
</thead>
<tbody>
<tr>
<td>October 1998</td>
<td>April 1999 Dean's Fellowship for Best in Research Award</td>
</tr>
<tr>
<td></td>
<td>Georgia Institute of Technology</td>
</tr>
<tr>
<td></td>
<td>May 1999 Earth and Atmospheric Sciences Best Dissertation Award</td>
</tr>
<tr>
<td></td>
<td>Georgia Institute of Technology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kevin Davis</th>
<th>Gold Award, Graduate Student Research Materials Research Society (MRS) San Francisco</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 2000</td>
<td>Sigma Xi, Best Master's Thesis Award Georgia Tech</td>
</tr>
<tr>
<td>February 2001</td>
<td>17th Annual Research Symposium, Physical Sciences First Place Award</td>
</tr>
<tr>
<td>March 2001</td>
<td>Virginia Tech</td>
</tr>
</tbody>
</table>
III. Summary of Major Findings from Research Activities

1. Reversed Calcite Morphologies Induced by Microscopic Kinetics: Insights into Biomineralization (Teng, Dove, DeYoreo, 1999, Geochim. et Cosmochim Acta). This experimental investigation of calcite growth quantified relationships between solution supersaturation and rates of step advancement. Using in situ Fluid Cell Atomic Force Microscopy (AFM), near-equilibrium growth rates were quantified by measuring the movement of monomolecular steps that comprise growth hillocks on {104} faces. Growth of this anisotropic material exhibited a complex dependence of step migration rates, v_{s+} and v_{s-}, upon small differences in solution chemistry along the conventional 'fast' ([Å41]₁⁺, [Å81]₁⁺) and 'slow' ([Å41]₁⁻, [Å81]₁⁻) crystallographic directions (Fig. 1). In quantifying the sensitivity of step growth kinetics to supersaturation, we produced growth hillocks with unique geometries (Fig. 2). As supersaturation decreased, v_{s+} and v_{s-} converged and growth hillocks expressed a pseudo-isotropic form (2AB). At lower supersaturation approaching equilibrium, an inversion in the rates of step advancement led to hillocks with unusual reversed structures (2C). Comparisons of the kinetic data with classical theoretical models suggested that the observed behavior was due to interaction of impurities with the two step types via two different mechanisms: incorporation at the [Å41]₁⁺, [Å81]₁⁺ steps, and blocking by short-lived adsorbates on the [Å41]₁⁻, [Å81]₁⁻ steps. These findings demonstrate the control of crystallographic structure over the local kinetics of growth to stabilize the formation of unusual hillock morphologies that may occur at the near-equilibrium conditions found in natural environments.

2. Thermodynamic Controls on Calcite Mineralization (Teng, Dove, DeYoreo, Orme, 1998, Science). The complexity of biomineralized structures suggests the potential of organic constituents for controlling energetic factors during calcification. Using in situ AFM to investigate the thermodynamic controls on carbonate growth, we investigated the nature of organic-calcite surface interactions. First, we directly measured the supersaturation dependence of the critical step length, L_c, at the apex of growth

![Figure 1](image1.png)

![Figure 2](image2.png)

![Figure 3](image3.png)
hillocks (Fig 3). Using precisely controlled solution compositions, we showed that this parameter is inversely dependent upon supersaturation, \(\sigma \), providing in the first experimental confirmation of the classic Gibbs-Thomson (G-T) relationship for any mineral or crystal system (Fig. 4). The G-T effect leads to a prediction that step advancement occurs only when the length of the step exceeds a critical value, \(L_C \), given by:

\[
L_C = \frac{2\omega \gamma}{k_b T \sigma}
\]

where \(\omega \) is area per growth unit; \(k_b \), Boltzmann constant; \(T \), temperature; and \(\gamma \), the step edge free energy. Teng et al. (1998) also obtained the first estimates of the calcite step edge free energies, \(\gamma \), and free energy barriers to one-dimension nucleation. (Note that \(\gamma \) (erg/m) is a fundamental parameter and is nonequivalent to the widely used but largely empirical bulk surface energy (mJ/m\(^2\)).) With these relations, we were able to show that the introduction of aspartic acid, a common component in biominerlizing systems, dramatically affected growth morphology by decreasing the magnitude of the step edge energy. We subsequently found that the kinetics of step advancement were not affected by the addition of aspartate (Not presented in Teng et al., Science, 1998.) These findings indicate that aspartate modifies growth through changes in the thermodynamic state of the surface.

3. Surface Site-Specific Interactions of Aspartate with Calcite in Dissolution: Implications for Biominalization (Teng and Dove, 1997, Am. Min.). This study showed how organics can induce rapid morphological changes and suggested a complex role of organic compounds. Matrix macromolecules involved in regulating the biological growth of calcite are known to share a carboxylic-rich character. This arises from the abundance of acidic amino acids, aspartate (Asp) and glutamate (Glu). In this study we investigated the interactions of Asp with calcite \{10\(\bar{4}\)\} faces during dissolution using in situ Fluid Cell Atomic Force Microscopy (AFM) and macroscopic ex situ optical methods. In control experiments, etch pit morphologies produced by dissolution in simple undersaturated solutions reflect the inherent symmetry of the \{10\(\bar{4}\)\} faces with a rhombic form. The introduction of Asp modified surface site reactivities to yield isosceles triangular etch pits (Fig. 5). With continued exposure to Asp-bearing solutions, the surface evolves into a network of interconnected tetrahedral “etch hillocks”. The component tetrahedral 'sides' have Miller-Bravais indices of (0001), (1\(\bar{1}\)01), and (01\(\bar{1}\)1). Structural and stereochemical constraints suggest that these faces in the hillock are a combination of corresponding facets from the\{1\(\bar{1}\)02\} and \{1\(\bar{1}\)00\} crystallographic forms.
4. Kinetics of calcite growth: Surface processes and relationships to macroscopic rate laws (Teng, Dove, DeYoreo, 2000, GCA). Classical crystal growth theory is linked with observations of microscopic surface processes to quantify the dependence of calcite growth on supersaturation, σ, and show relationships to the same dependencies often approximated by affinity based expressions. In situ AFM was used to quantify calcite growth rates and observe transitions in growth processes on (1014) faces in characterized solutions with variable σ. When $\sigma < 0.8$, growth occurs by step flow at surface defects, including screw dislocations. As σ exceeds 0.8, two-dimensional surface nucleation becomes increasingly important (Fig 6). The single-sourced, single spirals produced at lower σ were examined to measure rates of step flow and the slopes of growth hillocks. These data yielded the surface-normal growth rate, R, of (104) faces by the pure spiral growth mechanism.

The dependence of overall growth rate on dislocation source-structure was analyzed using the classical crystal growth theory. The resulting surface process-based rate expressions for spiral growth show the relationships between R_m and the distribution and structures of dislocation sources. This is important because most dislocations exhibit complex structures with multiple sources (Fig. 7). The analysis further shows how growth rate is highly dependent upon structure of the dislocation sources and growth mechanism (Fig. 8). The expressions resulting from this analysis were compared to affinity-based rate equations to show where popular affinity-based rate laws hold or break down.

Results of this study demonstrate that widely used second order chemical affinity-based rate laws are physically meaningful only under special conditions. The exponent in
affinity-based expressions is dependent upon the supersaturation range used to fit data. An apparent second order dependence is achieved only when solution supersaturations are very near equilibrium and growth occurs only by simple, single sourced dislocation spirals. These findings indicate the need for caution when deducing growth mechanisms and ‘rate laws’ from temporal changes in bulk solution chemistry.

5. **Chirality dependent interaction between calcite and simple amino acids** (Orme, Grantham, Teng, Noy, Dove, DeYoreo, accepted Nature). The effect of glycine, aspartic acid and glutamic acid on step speed, critical length and growth hillock, etchpit and crystal morphology was examined as a function of amino acid chirality and concentration. Addition of all amino acids during growth, led to stabilization of the (hk0) family of steps. When the amino acid had a chiral structure, the addition of pure L- and D- forms resulted in anisotropic expression of these steps so that the resulting growth hillock, etchpits and crystal morphologies displayed mirror symmetry about the glide plane of calcite as shown for aspartic acid in Figs. 9, 10 and 11. The addition of glycine, an achiral molecule, or D and L mixtures of aspartic and glutamic acid, led to symmetric forms as illustrated for glycine in Fig. 12. Because the overall facet shape exhibited the same shape as the growth hillocks, we were able to use the growth hillock geometry to construct the modified Wulff diagram for the orientational dependence of the step edge energy as shown in Fig. 13.

For any site on one side of the glide plane, an equivalent site on the other side can be found for which the geometric relationship with neighboring sites is related by mirror symmetry. Furthermore, the geometrical relationship between a single functional group of the amino acid with any single site on one side of the glide plane can be matched at the equivalent site on the other side. Consequently, the results of this study show unequivocally that the interaction of the amino acid with the calcite surface must involve both the chiral center of the amino acid (i.e., multiple groups) and multiple sites on the calcite surface. Through crystallographic modeling we showed that the differences between the geometrical relationship of L- and D-aspartic acids to the calcite
surface were subtly different, indicating that the energetic changes needed to drive the system from the D-induced to L-induced forms were small. This was consistent with the shallow character of the minima in the Wulff plot of Fig. 13.

In an attempt to experimentally determine the structural relationship between the adsorbed amino acid and the calcite surface, we recently performed in situ grazing incidence X-ray diffraction, NEXAFS and FTIR on calcite \{104\} faces grown in the presence of aspartic acid. Despite the sub-monolayer resolution of these techniques, no evidence for an adsorbed layer was observed. Because the AFM data unequivocally show that such an interaction must exist, our conclusion is that the aspartic acid is adsorbed to the \{hk0\} faces, the same ones that are stabilized in the bulk crystals and that make up the step riser of the growth hillocks grown in the presence of aspartic acid. We are currently modeling the structure of an aspartic acid adsorption layer on the \{110\} and \{1-10\} faces for both the D and the L forms, and we are preparing samples for optical and X-ray spectroscopy of those faces in aspartic acid bearing solutions. In addition, before the current project is completed, we will have calculated the energy associated with ASP binding to these faces.

We showed that the addition of amino acids had little effect on the step speeds for the two types of steps on the calcite surface. In contrast, the terrace width (critical length) varied continuously with increasing amino acid concentration until, at high concentration, the well-defined step directions were lost as in Fig. 10. The results of this study demonstrate that the physical effect of the amino acids on the growth of calcite is to alter the surface energetics and not the step kinetics. In other words, modification of calcite by acidic amino acids is a thermodynamic effect, not a kinetic one.

IV. Summary

This project has been highly successful and we thank our sponsors for the opportunity to advance scientific knowledge in this rapidly advancing area of basic research.